
AD-A273 676
4~i ~ ~ WS JCDIMP-.-93J1 72 11I /l/ ll /111 11111 11111 lli l I 11

PROCEEDINGS OF THE 1993 COMPLEX SYSTEMS
ENGINEERiNG SYNTHESIS AND ASSESSMENT
TECHNJOLOGY WORKSHOP (CSESAW '93)
(20-22 JULY 1993)

STEVEN HOWELL, COORDINATOR

SYSTEMS RESEARCH AND TECHNOLOGY DEPARTMENT

• +.DT O
17 OCTOBER 1993 ELECT

Approved for public release; distribution is unlimited.

93-30135

NAVAL SURFACE WARFARE CENTER
DAHLGREN DIVISION *WHITE OAK DETACHMENT

Slver spring.4ti 2Wyhd1OM-640

9312 1003

Best
Available

Copy

NSWCDD/MP-93/172

PROCEEDINGS OF THE 1993 COMPLEX SYSTEMS
ENGINEERING SYNTHESIS AND ASSESSMENT

TECHNOLOGY WORKSHOP (CSESAW '93)
(20-22 JULY 1993)

STEVEN HOWELL, COORDINATOR
SYSTEMS RESEARCH AND TECHNOLOGY DEPARTMENT

17 OCTOBER 1993

Approved for public release; distribution is unlimited.

NAVAL SURFACE WARFARE CENTER
DAHLGREN DIVISION * WHITE OAK DETACHMENT

Silver Spring, Maryland 20903-5640

I FOREWORD

1993 COMPLEX SYSTEMS ENGINEERING SYNTHESIS AND
ASSESSMENT TECHNOLOGY WORKSHOP (CSESAN '93)

As technology has developed, computer-intensive systems have
increasingly become extremely large and complex, controlling a
wide variety of resources and operating in many unforeseeable
situations. Many of today's systems have hard real-time,
stringent dependability, intensive security, and demanding cost
of ownership requirements. They are typically implemented on a
combination of parallel and distributed architectures and are
embedded within a human organizational structure and/or have
human operators in the loop.

This is the third year of the CSESAW (pronounced see-saw)
workshop. This year the workshop is co-sponsored by Office of
Naval Research, Naval Surface Warfare Center Dahlgren Division,
and Advanced Technology and Research (ATR). The workshop was
created to explore system level design synthesis and assessment
capabilities for large, complex systems. These capabilities will
facilitate the development of such systems from informal system
requirements, through the design phase prototyping, and into
implementation and post deployment. Component products produced
by these capabilities are specifications that subenvironments,
e.g., Hardware Engineering Environment (HWEE), Software
Engineering Environment (SEE) and Human Computer Interaction
Engineering Environment (HCIEE), will receive. The focus of this
workshop is the development and integration of these multiple
technologies and the exploration of the creation of a system
level engineering discipline with support technologies to provide
potential high payoff solutions to the difficult problems
encountered by designers, developers, and maintainers of real-
time systems. The emphasis is on resolving system level
technology issues that cut across component boundaries, such as
those associated with system behavior requirements of real-time,
fault tolerance, cost, and security.

The emphasis on this year's workshop is integration. The
technologies and capabilities need to be integrated with the rest
of the engineering process. Therefore, the capability to provide
tight linkages to detailed design evaluation, systems forward
engineering and systems reengineering must be developed,
ultimately providing a seamless overall engineering process. A
significant amount of effort has been put into component
technologies, such as hardware, microelectronics, memory,
databases, software, man-machine interface, etc. Major strides
have been made in these areas in the last few years. However,
the formal, systematic integration and engineering of these
components into an overall system has lagged far behind. For
large and complex systems with real-time, cost, dependability and

i

security requirements, the problem is especially acute. This is
a direct result of a lack of a system level engineering
methodology.-

We welcome you to this year's workshop. We hope to continue
to provide in the workshop an atmosphere in which the
participants, including technology developers, researchers, users
and customers can meet, interact and exchange ideas on relevant
issues. In the near future we hope to be able to say that this
workshop was the beginning of a new focus on systems design and
evaluation technologies.

This workshop would not have been possible without the hard
work of many people, including the workshop, program, and
advisory committees, authors, presenters of the submitted papers,
panel members, workshop attendants, panel chairs, and breakout
session chairs. A very warm "Thank You" is extended to all. In
particular, we wish to acknowledge Michael Edwards, Ngocdung
Hoang, Cuong Nguyen, Michael Jenkins, Chuck Sadek, Kathy Lederer,
Adrien Meskin, and Dong Choi. A particular thanks goes to
Elizabeth E. Wald and CDR. Gracie Thompson, of the Office of
Naval Research for tirelessly working for and supporting the
technology developments in this important area. Finally, we
would like to give a special thanks to Phillip Q. Hwang, who has
chaired the workshop for the past two years, and whose insight
and foresight has made the workshop possible.

We hope you have a productive and enjoyable workshop!

Steven L. Howell William Farr
Workshop General Chairman Workshop Assistant Chairman

ii

ABSTRACT

1993 COMPLEX SYSTEMS ENGINEERING SYNTHESIS AND
ASSESSMENT TECHNOLOGY WORKSHOP (CSESAN '93)

CSESAW '93 is exploring system level design synthesis and
assessment capabilities for large, complex systems. These
capabilities will facilitate the development of such systems from
informal system requirements, through the design phase
prototyping, and into implementation and post deployment.
Component products produced by these capabilities are
specifications that subenvironments will receive. The focus of
the workshop is the development and integration of these multiple
technologies and the exploration of the creation of a system
level engineering discipline with support technologies to provide
potential high payoff solutions to the difficult problems
encountered by designers, developers, and maintainers of real-
time systems. The emphasis on this year's workshop is
integration. To be effective, technologies and capabilities
developed need to be integrated with the rest of the engineering
process. Therefore, the ability to provide tight linkages to
detailed design evaluation, systems forward engineering and
systems reengineering must be developed, ultimately providing a
seamless overall engineering process. The workshop explores
technology issues in providing this seamless process.

Aeoession lor

NTIS GRA&I
DTIC TAB 0
Unannounced 0
Justification

By
•_Distribution/

Availability Codes

Avail and/or
Spocial

iii/iv

AGENA

1993 COMPLEX SYSTEMS ENGINEERING SYNTHESIS AND
ASSESSMENT TECHNOLOGY WORKSHOP (CSESAN '93)

July 20-22, 1993

Holiday Inn
4095 Powder Mill Road

Beltsville, Maryland 20705

Tuesday, 20 July 1993

0730 Registration

0900 Workshop Overview
Steve Howell, Naval Surface Warfare Center Dahlgren
Detachment

0930 Automating the System Engineering Process
John Rumbut, Naval Undersea Warfare Center

0945 Requirements Metrics: The Basis of Informed
Requirements Engineering Management
Robert J. Halligan, Technology Australasia Pty Ltd

1000 COFFEE

1015 Engineering and Analysis of Real-Time Systems
Jay K. Strosnider, Carnegie Mellon University

1045 On the Structure and Dynamics of a Deeply-Integrated
Information System
Bruce I. Blum, Johns Hopkins University/Applied Physics
Laboratory

1115 Integration Components, Spaces, and Cells
Jeffrey 0. Grady, General Dynamics

1130 An Efficient Approach to Systems Evolution (EASE)
Thomas C. Choinski, Naval Undersea Warfare Center

1200 LUNCH

1300 An Overview of the Processing Graph Support Environment
Roger Hillson, Naval Research Laboratory

v

i
1330 A Real-Time Object Model: A Step Toward an Integrated

Methodology for Engineering of Complex Dependable
Systems
Kane Kim, University of California, Irvine

1400 A Methodology for Complex Computer Systems Engineering
Robert L. Harrison, Naval Surface Warfare Center
Dahlgren Division

1430 An Assessment Control Board (ACB) and a System
Integration (SI) Program as Complements to the
Configuration Control Board (CCB)
Richard Evans, George Mason University

1445 A Generic Object Oriented Conceptual Pivot Model
Naoufel Kraiem, University of Paris I

1515 The System Engineering Technology Interface
Specification (SETIS) : An Update
Evan Lock, Computer Command and Control Company

1545 COFFEE

1600 RESEARCH AND TECHNOLOGY VISION PANEL
Chair: Phillip Q. Hwang

Wednesday, 21 July 1993

0800 The Representation of Resources for Large-Sized and
Complex Systems
Nicholas Karangelen, Trident Systems Inc.

0830 A Software Metrics Integration Framework
William M. Evanco, MITRE Corporation

0900 Measurement and Evaluation of Complex Navy System
Designs
Osman Balci, Virginia Polytechnic Institute and State
University

0930 Optimal Selection of Failure Data for Predicting
Failure Counts
Norman F. Schneidewind, Naval Postgraduate School

1000 Design Structuring for System Engineering
Jee-In Kim, Computer Command and Control Company

1015 COFFEE

1030 COMPUTER SECURITY TRADE-OFF PANEL
CHAIR: Kathy Meadows

1200 LUNCH

vi

1300 A Platform for Complex Real-Time Applications
Alexander D. Stoyenko, New Jersey Institute of
Technology

1330 A Testbed for Prototyping Distributed and Fault-
Tolerant Protocols
Farnam Jahanian, IBM T. J. Watson Research Center

1400 Architectural Synthesis of Mission-Critical Computing
Systems
Parameswaran Ramanathan, University of
Wisconsin-Madison

1430 An Intelligent Real-Time System Assessment Tool
Ed Andert Jr., Conceptual Software Systems Inc.

1500 An Environment for Analysis of Parallel Systems (FAPS)
Mohsen Pazirandeh, Innovative Research Inc.

1530 A Dependable System Perspective
Michelle Hugue, Allied-Signal Aerospace Company

1545 COFFEE

1600 COMPUTER BASED SYSTEM ENGINEERING (CBSE) ISSUES AND
DIRECTIONS PANEL
Chair: Dave Oliver

Thursday, 22 July 1993

08(,u Real-Time Databases for Complex Embedded Systems:
Predictability and Serializability
Kwei-Jay Lin, University of Illinois

0830 Divide and Conquer Strategies and Underlying Lossless
Principles
Harold Szu, Naval Surface Warfare Center Dahlgren
Division

0845 A Fault Injection Simulation Testbed for Analyzing
Fault Tolerance Protocols
William F. Dudzik, Advanced System Technologies Inc.

0900 Effectively Using the UNIX Make Utility for Permanent
and Temporary Changes
David H. Jennings, Naval Surface Warfare Center
Dahlgren Division

0915 Utilization Bounds for Tasksets with Known Periods
Swaminathan Natarajan, Texas A&M University

0930 A Stochastic Control Approach to Combined Task-Message
Scheduling in Distributed Real-Time Systems
Dar T. Peng, Allied-Signal Aerospace Co.

1000 COFFEE

vii

1030 SYSTEM INTEGRATION PANEL

Chair: Evan Lock

1200 LUNCH

1300 Comparing Formal Approaches for Specifying and
Verifying Real-Time Systems
Ralph Jeffords, Naval Research Laboratory

1335 Advanced Integrated Requirements Engineering System
(AIRES): Processing of Natural Language Requirements
Statements
Richard Evans, George Mason University

1345 Requirements Management/Requirements Engineering
(RM/RE)

Luke Campbell, Naval Air Warfare Center

1415 Computer Security, Safety and Resilience Requirements
as Part of Requirement Engineering
Daniel Mostert, Rand Afrikaans University

1445 COFFEE

1500 REQUIREMENTS AND TRACEABILITY PANEL
Chair: Stephanie White

viii

j ~CCJNT=S

Page
DESIGU STRUCTURZ

-Automating the System Engineering Process 2
John Rumbut--Naval Undersea Warfare Center

Requirements Metrics: The Basis of Informed Requirements
Engineering Management 9
Robert J. Halligan--Technology Australasia Pty Limited

Engineering and Analysis of Real-Time Systems 15
Jay K. Strosnider--Carnegie Mellon University

On the Structure and Dynamics of a Deeply-Integrated
Information System 29
Bruce I. Blum--Johns Hopkins University/Applied Physics
Laboratory

Integration Components, Spaces, and Cells . ._.. 38
Jeffrey 0. Grady--General Dynamics Space Systems Division

An Efficient Approach to Systems Evolution (EASE)......... 43
Thomas C. Choinski, John G. DePrimo--Naval Undersea
Warfare Center

An Overview of the Processing Graph Support Environment . . . 49
Roger Hillson--Naval Research Laboratory

A Real-Time Object Model: A Step Toward an Integrated
Methodology for Engineering of Complex Dependable Systems . . 56
Kane Kim, L. F. Bacellar--University of California, Irvine

A Methodology for Complex Computer Systems Engineering . . . 65
Alexander D. Stoyenko, Lonnie R. Welch--New Jersey
Institute of Technology; Robert L. Harrison,
Harry Crisp--Naval Surface Warfare Center Dahlgren Division

An Assessment Control Board (ACB) and a System
Integration (SI) Program as Complements to the Configuration
Control Board (CCB) 74
Richard Evans--George Mason University

A Generic Object Oriented Conceptual Pivot Model 81
Naoufel Kraiem--University of Paris I

The System Engineering Technology Interface Specification
(SETIS): An Update......................................94
Baba Prasad, Moon Lee, Rajesh Puroshothaman, Evan Lock--Computerj Command and Control Company

i
I ix

I

3EnElSENTATION AND MEASUPflNENT
Pg

The Representation of Resources for Large-Sized and
Complex Systems 107
Nicholas Karangelen, John Intintolo-Trident Systems Inc.;
Ngocdung Hoang, Steve Howell--Naval Surface Warfare Center
Dahlgren Division

A Software Metrics Integration Framework 112
William M. Evanco--MITRE Corporation

Measurement and Evaluation of Complex Navy System
Designs 126
Osman Balci, David DeVaux, Richard E. Nance--Virginia
Polytechnic Institute and State University

Optimal Selection of Failure Data for Predicting Failure
Counts *.. _ . _ 141
Norman F. Schneidewind--Naval Postgraduate*School

Design Structuring for System Engineering 158
Jee-In Kim, Evan Lock--Computer Command and Control Company

ASSESSMENT

A Platform for Complex Real-Time Applications............ 172
Alexander D. Stoyenko, Lonnie R. Welch, Carlos Amaro, Bo-Chao
Cheng, Matthew Harelick, Xue Jin, A. K. Ganesh, Gray Yu--New
Jersey Institute of Technology; Phillip Laplante--Fairleigh
Dickinson University; Thomas J. Marlowe--Seton Hall University

A Testbed for Prototyping Distributed and Fault-Tolerant
Protocols 179
Farnam Jahanian--IBM T. J. Watson Research'Center; Ragunathan
Rajkumar--Carnegie Mellon University; John J. Turek--IBM
T. J. Watson Research Center

Architectural Synthesis of Mission-Critical Computing
Systems 185
Raed Aiqadi, Parameswaran Ramanathan--University of
Wisconsin-Madison

An Intelligent Real-Time System Assessment Tool 193
Ed Andert, Jr.--Conceptual Software Systems, Inc.; Larry Peters--
Software Consultants International Ltd.

An Environment for Analysis of Parallel Systems (EAPS) . . . 198Mohsen Pazirandeh--Innovative Research Inc.; Oliver McBryan--University of Colorado

A Dependable System Perspective 207
M. M. Hugue, N. Suri, C.J. Walter--Allied-Signal Aerospace
Company

x

Page

wim TTION TECsNOLOGY

Real-Time Databases for Complex Embedded Systems:
Predictability and Serializability 215
Kwei-Jay Lin--University of Illinois: Sang H. Son--University
of Virginia

Divide and Conquer Strategies and Underlying Lossless
Principles... 235
Harold Szu, Edgar Cohen, John Wingate--Naval Surface Warfare
Center Dahlgren Division

A Fault Injection Simulation Testbed for Analyzing Fault
Tolerance Protocols.......249
William F. Dudzik--Advanced System Technologies, Inc.

Effectively Using the UNIX Make Utility for Permanent and
Temporary Changes 257
David H. Jennings, John J. Reilly--Naval Surface Warfare
Center Dahlgren Division

Utilization Bounds for Tasksets with Known Periods 265
Dong-Won Park, Swaminathan Natarajan, Arkady Kanevsky--Texas
A&M University

A Stochastic Control Approach to Combined Task-Message
Scheduling in Distributed Real-Time Systems 273
Dar T. Peng, Kang G. Shin--The University of Michigan

REQUIREMENTS

Comparing Formal Approaches for Specifying and Verifying
Real-Time Systems 300
C.L. Heitmeyer, R.D. Jeffords, B.G. Labaw--Naval Research
Laboratory

Advanced Integrated Requirements Engineering System
(AIRES): Processing of Natural Language Requirements
Statements _ ' _._................309
James D. Palmer, Richard'Evans--George'Mason'University

Requirements Management/Requirements Engineering
(RM/RE) 316

Luke Campbell--Naval Air Warfare Center-Aircraft
Division, PAX

Computer Security, Safety and Resilience Requirements
as Part of Requirement Engineering 324
DNJ Mostert, SH von Solms--Rand Afrikaans University

xi

PAN PAPERS age

Distributed Design of Computer-Based Systems:
Traceability 364 I
Stephanie White--Grumman Corporate Research Center

Distributed Design of Computer-Based Systems: NeededAcademic Programs 366Julian Holtzman--CECASE/University of Kansas

Distributed Design of Computer-Based Systems: Methodology 368
David W. Oliver--GE Corporate Research and Development

Distributed Design of Computer-Based System 370
David G. Owens--Paramax Systems

Panel Description: Computer Security Tradeoffs 373
Catherine Meadow--Naval Research Laboratory

Appendix A--List of Panels.... A-1
Appendix B--List of Attendees B-i

DISTRIBUTION .. (i)

xii

DESIGN STRUCTURE

I1

Automating the System Engineering Process

John Rumbut
Naval Undersea Warfare Center

Architecture and Computer System Division
Architecture and System Development Branch

Newport, RI 02841
(401)841-3616

rumbutfada.npt.nuwc.navy.mll

Abstract method in which to predict the future methodologies,
tools, or standards which will eventually emerge. The

Navy system development is a participative process mythical silver bullet still remains elusive.
carried out by two primary groups: customers/users
and producers/builders. These two groups Automation will have an important role in developing
communicate amongst themselves in a terminology solutions for large system development. However we
and within a framework that is specific to their must determine a desirable method to interface with
respective domains. Currently, the main bridge of information. Ideally the problem can be simplified to
communication between the two domains exists an extremely large database consisting of problem
primarily in the form of natural language (specifically domain information with links (multiple frontends)
text and notional drawings). With "small" problems into the database. The links are determined by the
this type of communication is adequate. However, types of information being entered, queried, etc. With
with "larger" complex systems the problem of large system development many different specialists
communication between the groups is exacerbated. will be involved and each will have different
This paper begins to outline a generic framework for requirements as to what type of information is
system engineering but focuses on the needs for Navy required for them to perform their job correctly. This
Combat Systems development. will require different views (linkages) of the problem

domain data.
Introduction

The maintenance of these linkages, both in a
Analysis is the systematic process of reasoning about horizontal (across the problem) and vertical (detailed)
a problem and its constituent parts to understand direction, is an ideal application of automation.
what is needed or what must be done. Analysis thus However, this large amount of data causes what has
involves communicating with many people. Initially been referred to as the information glut. So much
those who are most familiar with the existing need data from many different areas needs to be effectively
and its surroundings, that is, the problem domain managed. Concepts such as information filtering,
must be contacted. Developers will also need to information retrieval and collaborative filtering will
communicate with the users, managers, and play a key role in our managing of this information.
maintainers because they are all potential sources of [5,6,7] These are similar problems that fall under the
new requirements. A method is needed to achieve a category of library science.
common understanding of the problem domain. This
will allow for both the user of the proposed systems A framework is needed that will allow for easier bi-
and the developer to have means to ensure that they directional transition of information between the
are understanding each other during the development customer and the system designer. Currently,
process. development life-cycles generate a confrontational

environment with each side attempting to interpret
There are few accepted standards for process tools documents in a way that will best represent their
and there are no guidelines pointing out an efficient organization. The success or failure of the product
usage pattern. A metric with which the effects or depends upon high quality information exchange.
influences of any tool or method can be predetermined
does not exist. There is currently no individual tool or
method that is appropriate or suitable to every
organization or problem domain, nor is there a

2

Some Simple Business Models Observation
Information exchange occurs again when the designer

System development projects consist of three basic submits his proposed design back to the customer,
types. The first is for a system built by a user for a this time the customer needs to be trained. Most
user. Most of us have done this type of application software engineering firms are utilizing various CASE
development everywhere from building up a spread (Computer Aided System Engineering) tools as part of
sheet macro for our checkbook to building a prototype their specification/analysis effort. These tools will
system to go onboard a military platform for support the designer by assisting in developing
evaluation. Communication between the application graphical and textual information for the
domain and development is obviously very high. This specification. An assumption is made that the
type of relationship is what we hope for in all our customer will easily understand the resulting
systems, how realistic this is, is questionable. documentation. This however, is not always true.

The second type consists of a developer building a Commercial informal graphical models (CASE tools)
product for a perceived user. This is the type of have yet to be proven to be overly effective in system
system developed by companies like Microsoft, development. Systems like the NASA space shuttle
Symantec, Borland and other commercial venders. system which did not use any CASE tools was very
They perform market research and determine what successful in their SEI (Software Engineering
new product will sell Institute) process development review and they only

used 'pencil and paper' to manage their development
IThe third type consists of a user describing a need to process. This leaves us with questioning the
a developer who then goes off and builds the new usefulness of the informal notation. Are the informal
system. This type of system can be seen in the types graphical models useful? Or is it more important to
described above if the systems are large enough to be provide a disciplined structure to development?
built by others. These groups though can still belong
to the same organization/agency but because of the Automated tools are commonly used to help improve
diversity of the organization may not have a complete communication and system understanding. Software
understanding of the problem domain. engineering organizations today see selection and use

of software development and support tools as crucial
As we examine each of these models we can see we go in improving personal productivity and product
from a very high fidelity communication model (user to quality. Each organization is different; specific
user) to a very difficult relationship in the user to problem domains may be their primary business,
developer model Navy systems mostly fall within the which can require a certain hardware device and/or
third category. Communication between the programming language. Therefore, each organization
developer and the customer is filled with noise which will have specific expectations and requirements to be
hampers information exchange. There exist several addressed by automation.
different points of view within this type of
development. Managing this form of communication Often the customer has sent out requests for
is very diffult, proposals for a new system to different competing

firms. This is done with the hope of keeping the costs
The information that will be provided from the down and improving the quality of the product by
problem domain will be in terms of that domain. stimulating competition. However, since each of these
Whether this information comes from documents, competing firms may make use of different tools and
questionnaires, demonstrations of existing systems or methodologies it will become very difficult for the
tutrials provided by the customer to the developer, a customer to evaluate the submitted proposals
great amount of time, energy and training is needed adequately. This same type of problem can easily
for the designer to become informed enough to occur in large projects where numerous subcontractors
generate a proposal. Usually the developer needs to (or divisions in large companies) are responsible for
learn a new vocabulary, discipline or method. Even if different subsystems. Each may have already made
the developer has worked with the problem domain a significant investment in a
before, chances are the new system reflects changes of methodology/representation tool. How does one
technology within the domain, so new (potentially convert, without losing information, between these
radically different) functional behavior will have to be different tools? Is there some form of mapping from
learned. one to the other? Some standard is required. CASE

3

tool research has focused on standardizing on the use 'optimum' set of tools, nor does a set of 'generic' tools
of a graphical representation. currently exist that will satisfy the needs of all

organizations and problem domains. This is not
Before the designer became proficient with the model unusual; universal models of any sort are hard to
used by the CASE tuol, a significant amount of come by and are often never completely am-epted.
training was required. The designer went to training
sessions, used the technique to develop small scale Process and the System Engineering Database
applications (threw the initial attempts away and
then tried again) and worked with other team When a need has been determined for a new Navy
members who had experience with using the application, feasibility studies will be performed to
tool/model. The customer will need similar skills and determine whether the system needs to be built. If
experience in order to interpret the design the need is strong enough a specification of what is
documentation correctly. The customer may not have required will be developed. Lets call this Capture
to be an expert in using the tool but the customer Point I (CPI). S of the questions we need to
must be able to interpret and understand the model answer are:
representation of the decomposition. What determines the success/failure of our

feasibility study?
Unfortunately, this expertise rarely exists on the side How do we effectively estimate costs?
of the customer. This means that the participants in Can we estimate technology shortfalls?
this process are often divided between those who Is this similar to something we have done
understand abstraction and formal terminology of before?
system/software development and those who do not. Does or can reuse play a role?
For the latter, formal terminology is an unacceptable
method of determining system feasibility. However, Assuming that a need for a new system was
without formalism, the specification of a system determined, the Navy will generate a specification on
cannot be a basis for development or analysis. If a what is needed to be built. The Navy will have
specification is vague then the entire development responsibility for generating this document that will
process will be serendipitous. This will cause cost be delivered to competing contractors who may wish
overruns, increased length of project development to bid on the work for this new system. We'll call this
time, and a possible lack in desired system Capture Point 2 (CP2). Some of the questions at this
capabilities, point are:

What are the information needs of those who
As mentioned earlier how will competing firms be must start this process?
evaluated by customers if each is using different How do we capture information from the
notations? The problem domain specialists are not feasibility studies?
necessarily system engineering notation specialists What form should this data be in for the
and do not have the inclination nor the time to learn bidder to adequately bid upon this
numerous notations (and become expert) in order to new system?
evaluate proposals. This appears to provide a strong What is the metric for determining
disconnect between developer and customer. A completeness of the specification?
simple solution to this is for the customer to
sta ardize on a set of notations and force all bidders The developers involved will generate a proposal back
to use this set of notations. Is there a universal set of to the Navy for evaluation. This is Capture Point 3
notations that will satisfy all types of Navy (CP3). Again we have some questions we want to
applications? Do we need a method of categorizing answer at this point:
problems and using this information to best select a In what format (graphical, text and/or
development model? prototype) should it arrive back for

evaluation?
Methodologies and supporting tools must be carefully How do we ensure completeness in the
matched to the adopting body in order to facilitate the proposal?
development process. The choice of the wrong tools Can we automatically rate portions of the
can not only fail to improve the process, but can proposal?
actually work against it. A universal set of rules has Are the cost estimates accurate?
not been devised to aid users in selecting the

4

Is the technological approach correct? dynabase is a byproduct of everyday work. Once

information is in the dynabase, however,
The last capture point is the development process how will it be viewed and retrieved?
itself. This embodies all of the work of the developer To what extent will users have to add
and how we manage this process activity. This is retrieval-enhancing information such
capture point four (CP4). We will not cover this part as key words?
in this paper. To what extent will the system be able to

generate such clues by analyzing a
The system engineering framework needs to unify all document or the context in which it
of these capture points into a single framework, no was created?
matter in what format they are currently stored. The
framework must have the ability to collect data from These are difficult questions, but if they sound
a user community with diverse functional interests. insurmountable, do not despair-the system does not
This information has to first be evaluated, validated have to be perfect just better than it is today. [11
and Lied together in a cohesive package. At some Rather than having to track down information in
point this package will be judged ready to be paper form (which often do not even include indexes)
available for others to review and submit bids for the or go looking for a copy of a floppy with a
work of product development. Packages will be document/chart on it or do a file search through
returned to the Navy in a format that is 'tied' to the directories we can use more automated
original specification generated by the Navy. The searching/tracing techniques. An example of this is
proposal package from each developer is accepted into the Wide Area Information Servers (WAIS). This is a
the system and then these proposals packages are free-text search which is highly amenable to parallel
evaluated against each other and the original computing (WAIS is implemented on a Thinking
specification to determine a final candidate. The Machine's Connection Machine) . In most text.
framework supports bringing the problem to a retrieval systems, queries are limited to Boolean
solution space and then managing the system combinations of a few terms, but since text on a
throughout its lifetime. The framework should also Connection Machine is fast, searches for documents
support supplying information (for reuse) to other which are similar to an entire document are practical.
projects to be built in the future. This same technique is used in Dow Jones's

DowQuest, a commercial system that uses a
A key element of large scale system development is Connection Machine to scan more than 150,000
understanding other participant's perspective. By articles from 195 publications for relevance to on-line
increasing the amount of communication to all queries. [1]
participants a better appreciation for other's needs
should emerge. We can achieve this by collecting Lotus notes is a commercial venture in providing tools
information from these sources provide retrieval, for organizing people and diverse information sources.
filtering and analysis of this information. We have There are several other firms which have entered the
already started much of this. What we have not done field commonly known as groupware. This technology
is effectively 'tied' all of these sources together. has stressed the importance of keeping all parties

informed. What makes this technology very useful for
As the data is entered into the database it will need our purposes is that it links (or ties) information not
to be filtered. The data will n*-4I to be entered in a just vertically like traditional CASE tools but
manner that allows for retrieval in a variety of ways. horizontally across numerous project functions;
First we need to handle the data base horizontally. thereby increasing the amount of positive exchange of
What this means is we want to handle the ir-lividual information between all developers and customers.
sources of information (documents, charts, graphs,
code, multimedia or other information The information should be used to assist the
representations). We propose to manage this in the customer and the developer in identifying critical
form of a Dynabase: a dynamic database containing areas, errors and make suggestions for possible
the notes, sketches, papers and other documents that remedies. For example with development data on
are created over time. Much of the information that line it may be possible to determine system schedules
organizations collect today is already in a machine by access;,ig each of the development area's
readable form. In a sense then, the creation of a Zatabases. It should also be possible to query the

system to see how many functions are assumed to

5

I-m nnmrm m mm n m i i =m

I

have access to a device or provide timing budget searches. Each author of a document submits the
information so system performance can be paper to the system. The system searches through
determined. This information is available online, not the document and compares it with some keywords it
reported every month. With the resultant information may already have in its data base. The author of the
from these types of data analysis we hope to provide document may have made changes since the last time
insight on our system shortfalls. This type of the document was entered into the system. The
checking is simplistic. If we are to manage numerous system can recognize that there were changes and
forms of information we have to add more intelligence attempt to associate those changes with possible
into our automation. side-effects to other sections of the system under

development. These changes can impact others in
In 12] we worked on the problem of symbolic/numeric technical, cost and schedule areas. Low level
representation. In that work we managed the state information sources are clustered and the effects of
space by observing trends in both the measured and this information is brought to the attention of the
computed data. On the basis of the observations, the appropriate personnel
knowledge base would generate a solution to the
problem or generate a new set of parameters for These searches of patterns are not limited to simple
reevaluating the state space. We accomplish the keywords. It should be possible to access information
generation of symbolic information detecting from all of the dynabase that have been collecting
thresholds and patterns [21. Thresholds are numeric information. It is possible for example to perform
values for such things as in the example above. As evaluations of data dictionaries of data flow diagrams
thresholds are reached symbolic representations are and compare it with legacy systems to see if there are
given to the data set. These data sets are evaluated candidates for reuse and/or mapping of performance
against our rule set to look for higher order patterns. requirements to potential COTS (Commercial Off-the-
When we examine the set we can determine what Shelf) hardware/software components. (Currently
errors there are (if any) and where they are located by there is an effort underway in the COSIP program to
using our linked data. A useful technology for develop such a database to support this kind of
working this problem is a blackboard architecture effort.) Obviously not all factors can be evaluated,
(see Figure 1). but a lot of the mundane consistency checks can be

automated or at least provide some level of
Large diverse clusters of data need to be used in a assistance (e.g. checking the government's
synergistic pattern in order for system engineers to specification against the contractors proposal).
better manage the process of development. A
potential analysis tool is blackboard architecture. BKuomledg
[3,7J A very basic blackboard concept is shown in Uktowd Some$

Figure 1. The blackboard model is a complex
problem-solving model prescribing the organization of
both knowledge/data and the problem-solving B
behavior within a single architecture. This is similar
to the familiar structured model of computation which
has a program acting on data. A blackboard model]
consists of a global database called the blackboard.
There are logically independent sources of knowledge
which are called the knowledge sources. The E
knowledge sources will respond to changes in the
blackboard to generate new hypothesis about the Simple Blackboard Model
data. (there are several different models for Figure 1
blackboard architectures see [61 for more information
on blackboards) This type of activity would need to run in a batch type

environment. Once the knowledge base has been
Typically the blackboard architecture is using these created we envision the user navigating through both
sources to find 'patterns! to help solve a problem raw and processed information. By processed we
jointly. For managing this data the solution may mean that the knowledge sources have made some
include finding issues that are common to a cluster of recommendations to the user which they may want to
users. Simple examples may include keyword

6

follow up. We feel this is more how the system hardware is dynamic and difficult to predict. But
engineer is working.. Working in two directions both standards are a good method of reducing the number
in a vertical direction and a horizontal, by having a of unique mappings. These standards will need to be
tool kit that saves the engineer from spending their part of our database/knowledge sources, they will
time looking for information, evaluating trivial provide convenient 'bounding! to our problem solving
information or reporting information they should be activity.
able to focus more on the problem solving issues.
This type of information merger also provides a better Future: Object Technology + Visual
picture to management who needs to monitor budget Technology + Assemblers
and schedule.

In the past when we were faced with problems of high
System development is a process of discovery, where degrees of complexity we raised the level of
as you add more information and evaluate it against abstraction to manage the problem. Where we had
previous knowledge you will find that more once used assembly language as the language to
information is needed or the wrong information was build our systems we now use high level languages
given or new problems arq exposed, etc. Each time such as Pascal, Ada and C++. We do not attempt to
you increase the granularity of knowledge you face the manage the assembly code generated by these
potential of finding errors For complex systems help languages. We argue that it is time again to raise
is needed in evaluating all of this information. In the the level of abstraction. In the beginning part of this
area of reuse, we feel that incorporating previous paper we discussed ways of automating the system
work at earlier stages of development will help ensure engineering process to help improve communication
maximum reuse. between the developer and the customer. These are

solutions for today. For tomorrow we envision a
Robust standards will play key roles in making large different relationship all together.
system development more manageable. Providing a
developer a standard to 'design to' rather than having Instead of having developers work with the customer
to develop new technologies to meet the needs will as in model three, developers will provide classes of
obviously reduce some degrees of freedom but it will objects. These classes will be accessed with visual
also help bound the problem. The effectiveness of environments that will help the user understand their
this will be premised on the quality of the standards. functionality. Since there are differences between the
These standards need to be fully evaluated towards rather simple behavior of a hardware device and the
issues such as performance before they are specified. wide range of functionality of a software component

additional information should be made available to
Forcing the use of hardware/software/humwa.-e the user. This can include multimedia presentations,
/security/communication standards will be difficult, graphical representations (data flow, object, Petri
Quite often a developers' cultural attitude is not to nets, etc.) besides textual descriptions. The user will
accept work from some other place, the classic 'not 'assemble' these classes together at a high level of
from mny shop' syndrome. Fortunately, newer abstraction using graphical techniques.
technologies such as object-oriented technologies are
changing this perspective. The culture here is 'why Visual programming languages (such as Prograph)
should I rebuild what has already been done?. This and even simulation tools (like SES/Workbench and
attitude is already common in hardware development CACI) have added iconic representations of elements
where it was far from cost effective to generate a new that can be connected in some digraph form. These
hardware device when using existing ones is much elements make up a rich set of primitive functions
more cost effective. The hardware culture here is that can be further defined by selecting properties of
about reuse. They proactively search for new sources each of the elements. Metamodeling allows the user
of reusable components and develop skills and tools of such an iconic model to build new representations
for solving problems with this limited set of from these primitives to better represent their
components. problem under study.

The hardware developer's task is somewhat limited. The problem of reuse and repository science is still an
The software aspect has to encapsulate the open issue. The metamodel philosophy allows us to
functionality of what the user wants and logically tailor generic techniques to match individual needs.
control the hardware resources. This mapping to the This would require developers to work on the

7

I
environment supporting the users doing the heavily biased on comments made from a small set of
development rather than performing the development system engineers and my own preferences. In no way
themself. The user is working more like in the first is this a comprehensive list of what is required to
model which had the highest level of communication meet the system engineer's needs but it is a step in m
and the developer is working more like the second the direction of specifying what an engineering station I
(perceived need) rather than the third model (user to could look like.
developer). The communication between the
developer and the customer should be of higher References I
quality and in shorter spurts since communicating

will focus on construction of a particular class rather (1] Press,L Collective Dynabases, Communications of
than an entLir system. the ACM, Vol. 35, No.6, June 1992, pp26-31

[2) Baylog, J., Zile, S. and Rumbut, J. TARSLA An I
Developers will work more on building up class Intelligent System for Underwater Tracking,Promcof
libraries of information for the customer to use to the Expert Systems in Government Conference
build the system. This is similar to how hardware (Philadelphia Oct. 86).
development occurs now. A hardware vender, using [3] Engelmore, R. and Morgan, T. (Edo) Blackboard
business model two, sees a need for a particular Systems, Addison Wesley, Wokingham England,1988
hardware device. They build the device and market it [4] Page-Jones,M. The CASE Manifesto,Computer
to their customers. After a while whole catalogs of Language, June 1993
these devices are available, like a TTL data book, [5]Bowen, T.F., Gopal,G.,Herman,G., Hickey,
and users will build their new systems from these T.,Lee, KIC., Mansfield,W.H., aitz, J. and A.
catalogs. Work has already been done in this area for Weinrib, The Datacycle Architecture, Communications
VHDL, where they are building libraries of models of of the ACM, VoL 35, No. 12, December 1992, pp71-81
devices for simulation tools. [6] Belkin, N.J. and Croft,W.B., Information Filtering

and Information Retrieval: Two Sides of the Same
These are not new concepts but technologies such as Coin?,Communications of the ACM, VoL 35, No. 12,
blackboards, parallel computers to speed up December 1992, pp29.38
searches, a new cultural attitude towards reuse and [7] Selfridge, 0. Pandemonium: A Paradigm for
better graphical capabilities make these ideas Learning, Symposium on the Mechanization of
possible. The framework we spoke of earlier can Thought Processes, H.M. Stationery Office, London,
become the repository of this new assembler 1959
technology.

Summary

Our research has lead us to not have. a single 'static'
representation of the system but rather to express the
problem domain in a dynamic fashion. This has led
to developing a unified informal/formal paradigm. We
attempt to express the information, the same
information, in numerous forms and allow for various
methods of information retrieval. It's important that
this representation be in a form that all people
involved are comfortable with and basic enough to
allow for communication across different domains.

As reuse/reegineering/repository technologies mature,
new business models will emerge.
Visualization/Commercial Off-the-Self hardware will
allow for users to develop more of their system than
previously done.

This paper addressed a simple wish list of what a
system engineering framework should do. It is

8

Requirements Metrics: The

Basis of Informed Requirements Engineering Manaement

Robert J. Halligan

Technology Australasia Pty Umited
I010 Doncaster Road

Doncster East Vic 3109 Australia
Fax 61-3441-8374

Abstract 2 The State of the Requiremes Art

Available data demonstrates that Data from TRW developed in the early
def•ctive requirements are a dominant cause of 190s showed that, on a range of representative
cost and schedule overrun in defense and projects, 30 per cent of design problems requiring
aerospace programs. This paper presents a correction were due to erroneous or incomplete
structured methodology for measuring the specifications. Another 24 per cent of errors were
quality of requirements, individually and due to conscious deviation from product and
collectively. It is shown that requirements may process requirements. Other studies [1) have
be characterized by ten quality factors, each shown that the cost to correct an error typically
with an associated metric, and by an overall increases by a factor of between 20 and 1000 over
requirements quality metrics. In addition, the the life cycle of a system acquisition. System
requirements engineering process itself can be solutions which satisfy the contract, but not the
instrumented by means of five process-related need, are, unfortunately, commonplace.
metric. The paper describes the author's Engineering practitioners have come to
experience with application of both types of regard improved requirements engineering as
metric to engineering decision making. A tool one of the challenges of the 90's. The responses
which automates aspects of metrics collection is to this challenge have included:
presented. * early, concurrent development of product

and process requirements covering all
1 Introduction product life cycle phases, from concept

through to disposal [2);
Requirements engineering deals with the • improved analysis of requirements by the

capture, analysis, expression and traceability of use of operational requirements languages
requirements. Requirements engineering may and associated tools, for example RDD [3);
commence at the level of a broad statement of and
military need, and will continue through the 0 management of requirements through
definition of the system solution, right down to integration of text processing and relational
the lowest levels of specification of elements of database (or similar) support [41 resulting
that solution, for example, C, D and E in improvements In requirements
specifications in the hardware world and traceability and in the productivity of
minispecs in the software world. requirements analysis and flowdown

Requirements engineering does not simply activities.
happen, it requires management. Classically, This latter trend has brought with it a
management is considered to comprise planning, tendency, highly beneficial in the author's
organizing, staffing, monitoring and controlling, view, to manage all program requirements as a
If we accept that "that which cannot be single set. Requirements may be readily
measured cannot be controlled', the role of allocated across all elements of the program,
requirements metrics is readily apparent, for example the prime mission products(s),

But which metrics? Should we instrument project management, system engineering, test
the product (the requirements) or the process and evaluation, production, etc, and their
(the requirements engineering process) or both? interfaces. Within each of these program
How can requirements metrics be used to help elements, requirements may be decomposed and
the project team satisfy project success criteria? allocated to lower level elements, product
These and related issues are addressed below, interfaces and functional interfaces.

9

3 Users of Requirements one semantic interpretation of the requirement.

Connectivity refers to the property

Since requirements define the product or whereby all of the terms within the
process to be realized, it is axiomatic that the requirement are adequately linked to other i
success of any program is closely linked to the requirements and to word and term definitions,
adequacy of definition and communication of so causing the individual requirement to
requirements: properly relate to the other requirements as a I
" users rely on requirements as a precise set.

expression of their need; Singularity refers to the attribute whereby
"* the program office relies on requirements for a requirement cannot sensibly be expressed as

eliciting offers; two or more requirements having different I
"* both the customer and the contractor rely on subjects, verbs and/or objects.

requirements as an expression of their Testability refers to the existence of a finite
agreement as to what is to be delivered; and and objective process with which to verify that I

" the functional elements of the project the requirement has been satisfied.
organizations of both the customer and the Modifiability requires that:
contractor rely on requirements as an a. necessary changes to a requirement can be
expression of what they are to deliver to made completely and consistently; and
their respective internal customers. b. the same requirement is specified only once.

Feasibility requires that a requirement be
4 Requirements Quality able to be satisfied:

Requirements, to satisfy their users, must, in a. within natural physical constraints;
their expression, exhibit certain attributes. We b. within the state-of-the-art as it applies to
refer to these attributes as requirements quality the project; and
factors. The author has found that a set of ten c. within all other absolute constraints
requirements quality factors is necessary to applying to the projecL
adequately define the quality of requirements, 5 A Requirements Structural Model
individually and collectively.

Correctness refers to an absence of errors of Requirements are most commonly expressed
fact in the statement of requirement. as natural language statements, although

Completeness requires that the requirement graphical and formal math em at i c a i
contain all of the information necessary, requirements languages are widely used.
including constraints and conditions, to enable For the natural language type of expression,
the requirement to be implemented such that requirements quality metrics may be developed
the need will be satisfied. through the parsing of each requirement

Consistency requires that a requirement not statement into the elements of a structural
be in conflict with any other requirement, nor model of a sound requirement, a template. A
with any element of its own structure. template found to be suitable for English I

Clarity requires that the requirement be language requirement statements is illustrated
readily understandable without semantic in figure 1 [after 51. Figure 1 also shows an
analysis. example requirement parsed into the template.

Non-Ambiguity requires that there be only

Original Requirement:
In me Combat Zone, an HO swalm, w•IIh W Isdenfctl to a trunk node eWlic, hsld be Oventwo (2) Inkl"pndent Iknls to at Weast two (2) ohe nodes In te network.

1 Actor Element an HO Text

2 Condftlons for Action in Me Combat Zone
3 Action hl be given
4 Constraints of Action
5 Object of Action two (2) Independent Vnks
8 ReflnmenMtSource of Object
7 ReflnementtDelUnatloe of Actior to at least two (2) ote nodes In t"e network
8 Other which Is Wenical to a funk node ewlch

Figure I - Requirement Structural Template

10

Elements of the template are defined, These metrics are defined below.
generally in accordance with Fuji (5), as below- IRQ Individual Requirement Quality

Actorliniator of Action. This is the subject This metric for a single requirement is a
of the sentence - the thing being specified. number between 0 and 1, 1 representing a
Examples are: 'the system', "the interface", "perfecr requirement and zero representing a
"the function" totally defective requirement. The metric is

Action. This is a verb - the action to be constructed from the parsed version of the
taken by the actor (subject). Examples are requirement by:
"shall calculate', "shall display", "shall fly", a. determining which of the possible seven

elements of the structure are applicable and
Object of Action. This is a noun, and is the assigning a value of 1 to each applicable

thing acted upon by the actor. Examples are: element (most requirements have 5-7
"the message", "the input signal" applicable elements);

Conditions of Action. This defines the b. assessing each element of the parsed
conditions under which the action takes place, requirement against the quality factor
for example"upon receipt of a message", "in criteria, and scoring each applicable
high resolution mode', "within 10 minutes of element as I (satisfactory) or 0
power-on", -_ (unsatisfactory). An element may be

Constraints of Action. This qualifies the unsatisfactory because it is missing, or
action, for example "at a resolution of 400 x 1000 because it is defective in some other way. A
pixels", "within limits imposed by vehicle variant on the approach is to permit
speed", individual element scores between the

Refinement/Source of Object. These qualify limits of 1 and 0, although it is doubtful
the object, for example (refinement): "of flash whether this refinement offers any
priority', for example (source): "from significant benefit;
DISCON". c. calculating the metric by dividing the sum

RefinementlDestination of Action. These of the applicable element values into the
further qualify the action, and may be sum of the element scores.
additional to Constraints of Action. Examples IQF1-IQF1O Individual Quality Metrics
are "within 10ms", "to DISCON". Ten individual (requirement) quality

Other. This element collects non- metrics correspond to the ten requirement
requirements material quality factors, as follows:
6 Requirements Quaity Metrics IQF1 Correctness

IQF2 Completeness
A strong requirement will have each IQF3 Consistency

applicable element of the requirement, and the IQF4 Clarity
requirement overall, satisfying each of the IQF5 Non-Ambiguity
quality factors described earlier. This ideal IQF6 Connectivity
provides a basis for the development of IQF7 Singularity
requirements quality metrics. IQF8 Testability

Figure 2 illustrates the construction of a set IQF9 Modifiability
of metrics based on parsing of a requirement into IQF10 Feasibility

' the template.

Structural Element Applicebiltlt score Metric MetricName Value
Actor 1 0 Correctness J-1F
Conditions of Action 1 0 Completeness 10F2 0
Action 1 0 Consistency 10F3 1
Refinement of Action 0 0 Clarity 1.F4 1
Object of Action 1 0 Non-ambit 10F5 0
Reflnement/Source of Object 1 0 Connectivity- IF6 0
ReflnementiDestination of Actio 1 1 Singularity 1IF7 1
TOTAL 6 1 Testability IQF8 0

____________'______________________________.________ Feasibility 1OF10 1
Figure 2- Construction of Requirement Quality Metrics

11

These metrics assume, for an individual correspond to, and are produced from, the
requirement, a value of I or 0 depending on individual metrics, as follows (for x
whether the requirement overall has a defect of requirements)-
that type (0) or not (1). Again, scoring between RQ Requirements Quality
these range limits may be used if desired. O Yin

The metrics for individual requirements a !
rarely directly serve a useful purpose. It is QF1 Correctness
necessary to aggregate individual requirements 3 lQFI
"metrics to form metrics for groups of OF1I---
requirements in order to serve our objective of QF2 Completeness
control. In making this transposition to ___,_

aggregate metrics, we have consistently found QF2 - n
the need to adjust completeness to allow for Note an
requirements which are missing altogether, not negative value. cjust incomplete in the sense of missing a QF3 to QFiv are derived as for QFI.
condition or a refinement.

Requirements which have been omitted 7 Application of Requirements Quality
may be accounted for by estimating an omission Metrics
ratio for each requirement that is present. The A metric is only of value if it assists inomission ratio is the number of new requirements decision making.that would be created if all possible areas of Areas of application of the metricsomission suggested by the requirement that is Areabof arplimario n Table 1.
present were pursued to resolution. The omission described above are summarized in Table I.
ratio must be constructed such as to support Metrics should only be used where they
aggregation of requirements having different contribute positively to the degree o f
omission ratios. satisfaction sit go theldeg os

The quality metrics for sets of requirements goals. of project g including

Metric Application

RQ Requirements Quality a estimation of requirements-related bidding risk/opportunity
(depending on the type of contract)

"* estimation of requirements-related contract risk/opportunity
"* determination of the skills and level of resources required for

requirements analysis
" measurement of the quality of the product of requirements

analysis, in relation to decisions such as:.
a. termination of formal requirements analysis;
b. whether the project is ready for System Rquirements

Review (SRR), Software Specification Reviews (SSR) and
other requirements reviews;

c. whether system requirements are sufficiently mature for
establishment of the functional baseline;

d. whether 4l requirements are sufficently mature for
establishment o1 the allocated baseline;,

* assessment of the specification writing skill levels of project
tanm sbes

0 estimation of requirements-related subcontract
risk/opportunity

* use as a technical performance measurement (7PM) parameter
QF1-QFIO Requirements Quality Factors * identification of aspects of requirements which are

unsatisfactory
* identification of requirements-related skills in which training

of project pe=nnfis needed
• use as a TPM Parameter

Table 1 - Application of Requirements Quality Metrics

1.2

a Typical Values of Requirements organizations or phases for resolution of missing

Quality Metrics information.
RCOM Percent Completed.

Our experience in use of the metrics suggests This metric indicates the analyst's view of
the typical relationships between values of the that analysis of the source requirement has been
metrics and requirements quality shown in Table completed.
2. RAPP Percent Approved.

This metric indicates the percent of source

9Requirements Process Metrics requirements for which the results of analysis
(child requirements) have been approved for

Table 1 indicated the application o f incorporation in the destination document
requirements quality metrics. We have also In addition, the need to control the process
found it beneficial to use, for engineering of formally decomposing and allocating
management purposes, requirements process requirements of an element in the system
metrics, derived for requirements analysis tasks hierarchy to its subordinate elements has led to
such as system requirements analysis, software an additional metric
requirements analysis for CSCIs and hardware RALL Percent Allocated.
requirements analysis for HWCIs. This metric indicates the percent of parent

Useful metrics include: requirements of an element at one level of the
RSTA Percent Started WBS for which the corresponding child
This metric indicates the percentage of requirements have been allocated to the

source requirements currently under applicable lower level elements.
development, the "work in progress". All of the above process metrics provide

RTBD Percent "To be Determined" data for earned value measurement within
This metric indicates the percentage of project cost/schedule control systems. In

requirements containing TBDs, ie, requirements addition, RTBD has proved to be a useful
for which the resolution of incompleteness is parameter for incorporation into a technical
beyond the resources of the analyst and which performance measurement (TPM) program [2).
have been referred to other individuals,

Metric Very poor set of Fair set of Requirements at Requirements
requirements, requirements, may SRR suitable for suitable for

requiring just be suitable for carrying forward establishment of
substantial purposes of into the Functional

development solicitation, development Baseline
depending on the
SOW and type of

contract envisaged

RQ- 0.01-0.3 0.3-0.7 0.95-0.99 0.99+

QFI-Correctness 0.9 0.98 0.99 0.99+
QF2-Completeness -5 0 0.95 0.99+
QF3-Consistency 0.9 0.97 0.99 0.99+
QF4-Clarity 0.9 0.97 0.99 0.99+
QF5-Non-Ambiguity 0.3 0.7 0.9 0.98+
QF6-Connectivity 0.3 0.9 0.99 0.99+
QF7-Singularity 0.1 0.3 0.99+ 1
QFS-Testablity. 0.1 0.7 0.99 0.99+
QF9-Modifiability 0.1 0.5 0.99 0.99+
QF10-Feas'bility 0.95 0.99 0.99+ 0.99+

Table 2 - Typical Values of Requirements Quality Metrics

13

10 Computer Support to Metrics Re ftrenei
Generation [I] B.W. Boehm, "Software Engineering

Economics", Prentice-Hall, Englewood
Requirements management benefits Cliffs, N.J., 1981

substantially fromr the use of computer based
tools which facilitate, in particular, efficient [21 MIL-STD-499B Draft, "Systems
text handling, rigorous requirements allocation Engineering", 6 May 1992
and the creation and maintenance of peer and
parent-child relationships for requirements 13) M. Alford, "Strengthening th e
traceability purposes. Metrics prove to be most Systems/SoftSare Engineering Interface for
easily calculated where a CASE environment is Real-Time Systems", Proceedings of the
in use for those other aspects of requirements Second Annual International Symposium of
management. the National Council on Systems

One CASE tool for requirements Engineering, Seattle, 1992
management with which the author has
experience is Document Director ReqMgr, 141 M.B. Pinkerton and F.R. Fogle,
produced by Bruce G. Jackson & Associates, Inc. "Requirements Management / Traceability:
A prototype software package which automates A Case Study - NASA's National Launch
storage of metrics-related requirements quality System". ibid
and process data and which progressively
builds up requirements quality and process 15] R. Fuji course notes on Independent
metrics has been built for use with Document Verification and Validation, 1989
Director ReqMgr.

Proprietary tools known to the author are
also being utilized in a similar way by other
organizations.

11 Conclusions

Numerous best practice standards (ISO
9001, Software Engineering Institute criteria,
MIL-STD-499B) emphasize a closed loop
process as a key to effective technical mana-
gement. The metrics described in this paper are
a means of implementing closed loop control
over the requirements engineering process.

The cost of implementing these metrics
within a suitable, existing CASE environment
appears to be around two percent of the cost of
the total requirements engineering effort. The
engineering manager must decide whether the
resulting payoff will exceed this cost. Sufficient
data to conclusively answer this question has
not yet been deveioped by the author, nor has it
been identified from other sources.

Assessment of the cost-effectiveness of the
use of requirements metrics must therefore, for
the present, be subjective. It is the author's
assessment that requirements metrics,
developed on a sampling basis, used within a
suitable CASE environment, provide
considerable leverage in satisfying the goals of
complex systems development.

Greatest leverage is obtained where
sampling techniques are used in metric
development. Such sampling may focus on, say,
every nth requirement, or on areas of perceived
risk.

14

Engineering and Analysis of Real-Time Systems

Jay X Stromnder'
Department of Electrical & Computer Engineering

Carnegie Mellon University
Pittsburgh PA 15213

January 7, 1993

Abstrc

The following paper presents a unified framework for reasoning about timing correctness on arbitrary
serially reusable resources. The proposed approach bridess the gap between real-time scheduling theory
and its implementation on physical resources via cheduling models. We define scheduling models as
abstractions that can be used to reason about timing crectness on physical resources. We argue that
a consistent set of scheduling models for all shared resources encapsulated in the System Engineering
Workbench (SEW) enable the real-time systems architect to quickly explore the system design space,
to establish and maintain a firm performance baseline, to facilitate system resource partitioning and
management, to quantitatively evaluate bardware/soft ware boundary issues, to optimize system config-
uration parameters, and to explore the impact of new technologies. Further, we argue that scheduling
models operate at the right level of abstraction not only for system performance validation, but also for
interfacing with the Software Development organization. Scheduling models of CPUK)perating Systems,
bwkplane buses, disk subsystems, and local area networks have been developed, including the following
specific models: Real-Thms Mach, MWave08, Futurebus+, Microchannel Architecture, FDDI, and IEEE
802.5 token rings.

IThis research is supported in paut by prants from the Office of Naval Research and the Naval Ocean Systems Center under
contract N00014-91-J-1804

15

1 Introduction

Developing large, complex, distributed systems is a trying evolutionary process fraught with technical and

financial difficulties for both the contractor and the customer. Aggressive development schedules, coupled

with the inherent complexity of these systems, forced systems development into concurrent engineering

practices, long before there was such a thing as concurrent engineering. Projects moved from conceptual

design to detailed design to unit hardware/software integration and test, and onto systems integration

and test as much by programmatic definition as by technical maturity at each stage Schedule pressures

generally result in inadequate up-front Systems Engineering, which leads to incomplete and inadequate

development specifications for the hardware and software design/development organizations. As the sys-

tem moves towards sell-off, the problems inevitably snowball. The development process often degenerates

into an interactive fire-drill between the customer, Systems Engineering and the development groups.

Given this preamble, the approach advocated in this paper will go a long way towards alleviating the prob-

lem by providing methodologies that can be encapsulated into System Engineering friendly tools. These

tools will enable the System Engineer to quickly explore the systems-level design space in a quantita-

tive manner and answer the question, 'Will the system work?" at any point in the development process.

Further, the System Engineering Workbench (SEW), with its associated analytical framework, directly

supports concurrent engineering by providing the appropriate level interface to the software and hardware

development organizations. The Systems Engineer thus works directly with the development organiza-

tions reacting, resolving, and validating the inevitable changes, while simultaneously being the resource

management/allocation watchdog.

The proposed solution strategy has three core components: first develop a consistent set of scheduling

models for all system resources, second develop a set of the appropriate figures of merit (FOMs) to support

quantitative design decisions, and third encapsulate the scheduling models and FOMs into a user friendly

tool, the System Engineering Workbench. We do not discuss the figures of merit in the paper. Section 1.1

presents a generic framework for reasoning about timing correctness of physical resources that forms

the basis for the scheduling models. Section 1.2 provides an overview of the SEW tool and Section 2

16

summarinse how to design real-time systems using the proposed approach.

1.1 Scheduling Models

Scheduling theory holds great promise as a means to a priori validate the timing correctness d real-

time applications. However, there currently exists a wide gap between idealized scheduling theory and

the implementation realities of building large, distributed systems composed of real processors with real

operating systems communicating over real buses and real networks supported by real disk subsystems.

Specflcaft we propose a set of consistent scheduling models which accurately model the timing and

concurrency behavior of'system services software supported by the underlying system hardware resources.

We define system services software to be all the software which provides the infiastructure upon which

the application software runs. This includes: operating systems, database management systems, network

management systems, user interface/window management systems, etc. Each of these system services

software components is associated with managing its associated hardware resource, i.e. central processing

unit (CPU), disks, networks, displays, etc. Currently, scheduling theory assumes an idealized resource

with zero overhead and perfect preemptability. The scheduling models reported here extend scheduling

theory to address the overhead and limited preemptability costs of scheduling application software via

system services software running on real hardware assets. One simply cannot answer the question, "Will

the system work?* without correctly addressing the overhead and limited preemptability issues.

Consider the ideal scheduling equations for fixed and dynamic priority scheduling summarized in Table L

The fixed priority scheduling equations are general to any fixed priority assignment. The dynamic priority

utilization-based equation applies for either earliest deadline or least slack time algorithms. The dynamic

time-based formulation applies specifically to the earliest deadline algorithm [1]. A similar algorithm for

least laxity could also be developed. In general the time-based, exact case equations provide necessary and

sufficient conditions for schedulability whereas the utilization based equations provide less tight sufficient

conditions for schedulability. The exception is the 100% utilization bound for idealized earliest deadline

scheduling which is a utilization-based necessary and sufficient schedulability bound.

Note that Table 1 does not include the full conditions for checking schedulability for the time-based, dy-

namic priority case due to space limitations. The cumulative work Wj& (W across the interval defined by

17,

Idea (Tme-Based) Scheduling Equation.

_Time

Fixed YsV 2..w %.-

Dynamic o W UE(t) =i~usa (rfi-1 LWJ) C,

Ideal (Ut'imlton-Based) Schedulng • qpations

Utilization

Fixed Y sul,,...,u •. _d(2i-1)

Dynamic Ymul,,...,, . 1

Table 1: Ideal Scheduling Equations Summary

18

the basy period length. DMt must be evaluated to check that each job of each task meets its deadline.

The algoithm that performs this check is given br.

Find the busy period of the task set.
For each task in the task set,

For each job in the busy period,
Find the completion time of the current job
If the completion time > deadline, toot fails, exit
Adjust the idle time to the deadline of the next job
While the current time < the arrival of the next job

Increment the idle time to the next arrival
Iterate forvard

The dynamic time-based check is a much more complicated test that than the dynamic utllieatien-besi

check and will yield the same result for the ideal case. It is included here for completeness and as a

precursor to the dynamic, time-based schedulit models presented later.

We now extend the equations summarized in Table I to include the Impl tation effects ofoverhead and

blockin& The extended equations summarized in Table 2 constitute a set of generic scheduling models

that will be used to reason about timing correctness on the various resources. The generic scheduling

models have three additional components:

* Owerhead which captures the task dependent scheduling overhead that can be directly bound to the

application task.

e Oserhead,. which captures the task independent system level overhead encountered on some re-

D Bmocks which captures the time task n. is delayed executing by lower priority tasks due to imper-

fect pemptablit.

The Ow•he"d component effectively increases the run-time Ci. Other than increased loadinS it has no

other effects on the scheduNabilitY of the task set. The OcrheadA, component often shows up as a pe-

riodic system level task that can be readily incorporated into the scheduling framework. The Blockdugu

component due to imperfect preemption degrades the fixed priority, time-based formulation and the dy-

namic priority utilization-based formulations from necessary and sufficient schedulability conditions to

19

Generic Mims) Sclieduling Models

_ _Time

Fmied VO~6d P 4 VA + h" 21O~st<Dg P L

Dynamic "W~at u.ja - (rtiSkAJ (c, + o.wphenj) + owrea..d... * uteaaa

B() via Cj + Owha~d1 [NO + Owp,&a-wd +. Blockmo

Generic (Utilza~tIon) Scheduling Models

______Utilization,

Fixed~~ Tow ofQ id + <M1d,~WE 0 t2 1
-1)

Dyamic +',~±kid, f6~n + 3615d6:50 <

Table 2: Generic Scheduling Model Summary

20

sufficient schedulality conditions. With imperfect preemptability it is no longer necessarily true that

the response time of the first job of a task in critical zone phasing is always the longest (2]. Thus only

the time-based dynamic priority formulation remains a necessary and sufficient condition for schedula-

bility We farther note that the time-base approach [1] was specifically developed to address the impact of

overhead and blocking in dynamic priority scheduling algorithms. For a rigorous proof of the sufficienc

conditions for the generic scheduling models see [3].

The generic scheduling models summarized in Table 2 can be applied to develop schedulability criterion

for concurrent real-time task execution of arbitrary system resources. Table 3 summarizes the dominant

effects that contribute to Overh" ., Owrhlea... and Blockisn for CPU'I/OS's, Buses, Disks and Local

Area Networks. Note that the scheduler's functionality shows up in very different forms on the various

resources. Operating systems schedule CPUs. Buses are scheduled using hardware implemented arbitra-

tion protocols. Disks are scheduled with a combination of hardware and software in their controllers, and

LANs are scheduled via their Media Access Control (MAC) protocols. Scheduler/arbiter implementations

range from fully software implemented for operating systems to full hardware implementations on buses

and networks.

The Oue"hm4 component for CPU scheduling is composed mainly of the scheduler overhead along with

associated Interrupt Service Routines (ISRs), synchronization protocols, device drivers, etc. The bus

Owrhead. component tends to be dominated by the time for the arbitration lines to settle along with

addresping overhead and miscellaneous control functions. For disks, the Owvrhea4 component is dom-

inated by the physical movement of the head, and to a lesser extent the disk controller overhead. On

LANs, Orehea.- tends to be dominated by propagation delays along with addressing and miscellaneous

control functions.

The Owerhead.,. component shows up on all the resources in different forms as well. Operating system

event handling and scheduling is typically done at discrete intervals defined by an underlying periodic

timer interrupt. This system overhead component is not bound to specific tasks and may be readily mod-

eled as one or more additional system level task(s), v.,, with a run-time of OerhTed.,. and a period T.,..

Backplane buses often must support refresh of dynamic RAM memory components. The overhead as-

ciated with this function is readily modeled as a periodic Oerheea.,. component. Similarly disks have

21

CPU/= WW Protocol: Scheduler, 18& fSnh Time-Tic Time-Tic
Flexible, RM Device Drivers etc. Kenl-Fuacs.
MDS, etc.

Buses HW ProtocolRR Arbitration, Adds. DRAM fzmay, tenure)
Poe. priority Sync, . Control rfresh
Mg based priority

Disks S/W Protocol Head Movement Scan f(max. tenure)
RMS, EDS, Pscan Dominated, control S/W overhead

Tscan, etc.

LANs H/W Protocol Prop. Delay, Addr. & TTRT task fAmaz.pkt~propldelay) I
RR, Fixed priority Misc. control etc.

Table 3: Overhead and blocking for various sub-system components

an Ove•head.•. component due to the overhead from scanning. Although LANs typically do not have an

Overhead.. component, FDDI is an exception. Assuming prioritized scheduling at each FDDI node and

the use of the synchronous mode protocol, the scheduling affects of the other nodes can be modeled as an

Oeverhe..d. component.

The Blockgin& component arises on each of the resources due to imperfect preemptability. On CPUs the

BloCkhtv component is generally closely tied to the timer interrupt rate that drives the scheduler. On

buses, the Blockhm component is a function of the maximum transaction time on the buseL Similarly,

on networks, Blockih is a function of the maximum packet size as well a propagation affects. Disks are

generally nonpreemptable. Thus BlockhW is generally a function of the maximum single transaction size

permitted.

The previous section introduced generic scheduling models as a means for bridging the gap between ide-

alized scheduling theory and the implementation realities associated scheduling real processes on real

resourceL Two new terms were introduced to account for implementation overheads: Overhead, to ac-

22

count for overhead components that can be bound to each individual task, n., and Owehe*., to account

for system overhead components that cannot be directly bound to individual task executions. A BLockiA

term was introduced to account for the time that task r. is delayed execution due to imperfect resource

preemptability. We then summarized the dominant components of these overhead and blocking terms for

CPUs, buses, disks and LANL

1.2 System Engineering Workbench

Designing an effective tool at the system level is a difficult task. We are currently building the System

Engineering Workbench to encapsulate the models, methodology and figures of merit. The following para-

graphs summarize the design of the SEW tool.

The SEW tool is an X-Wimdow based system, with a user friendly interface that will allow the Systems

Engineer to interactively reason about real-time systems design via the complex theoretical models. The

philosophy of the tool is provide an interface that will allow the engineer toely add new models within

a consistent framework, to modify system parameters and quickly view the results, and experiment with

system design ideas and verify that the timing correctness of the system will hold.

SEW consists of the following components: task set editor, subsystem and system editors, subsystem and

system simulators, and the scheduling analyzer. The following subtasks describe the function of each,

and the process that we will go through to develop each. Note that an X-W'indow prototype is currently

being developed, and that the bulk of the analytical software that operates behind the user interface is

already in place. A high level view of SEW is provided in Figure 1. The following paragraphs provide a

brief summary of the form and function of each of the major components of SEW.

"" Task Set Editor:. This component of SEW provides a window for editing the application task de-

scription. This window will allow the user to graphically draw interconnected bubbles representing

tasks and their interactions. Each task can also be individually edited, allowing the user to specify

task resource requirements, including timing, communications, etc. Eventually, this window will be

hierarchical in nature, allowing common tasks to be grouped together.

"* Subsystem and System Editors This component of SEW provides a common window interface

23

""fl " "No" m._. .
VN"m 800 am~ b e(,- mm

_______ _______ I

CJ M

T"j

FigurI:_SstemEngieerigWorbenc Ovrie

(DD UPf

nej M

Figure 1: Systems Engineering Workbench Overview

for creating and modifying models of the various subsystems and the complete real-time system.

The various subsystems will be edited here, allowing the user to change system parameters, such

as blocking and overhead measurements. The system editor will specify the physical interconnects

between the various subsystems.

Subsystem and System Simulators An important part of the SEW tool is the ability to view

the expected task interactions. This window will allow the user to take the task set that has been

created and simulate its execution on either a particular subsystem or a combination of subsystems

into a system. This simulation is done at a high level, so that the user can see how the tasks interact.

* Scheduling Analyzer: This final window is perhaps the most important; through it the user can

test the schedulability of the created task set running on the given subsystem or system. This

window will allow the user to test the schedulability under any fixed or dynamic priority scheduling

criterion. The scheduling analyzer will also allow the user to experiment with the system design

space, by varying system parameters and viewing the resultant effect against quantitative figures

of merit. Through this window, the user can view common real-time system metrics for the task

24

SSub-System Type Models Available

Operating Systems HT Mach (68030, R3000, i960)
MWaveOS
Chimera II

Busses Futurebus+

Disks Generic Model

Networks IEEE 802.5 Token Ring
FDDI

IEEE 802.6 DQDB
ATM Switches

Table 4: Scheduling Models Summary

set, such as utilization, breakdown utilization, server capaciy, slack time, as well as find optimal

operating points for such things as operating system timer interrupt rate or minimum packet size

on a network.

The SEW tool is currently being developed and is reportedhere to emphasize the need for appropriate tools

to support the real-time systems engineer. This tool supported by the underlying scheduling model and

FOMs can greatly can help move real-time systems engineering from a practice to a sound engineering

disc'•]ine. In table 4 we summarize the scheduling models that have been developed to date.

2 Engineering Real-Time Systems via Scheduling Models

This paper presented a unified framework for reasoning about timing correctness on arbitrary, serially

reusable resources. The proposed approach bridges the gap between real-time scheduling theory and its

implementation on physical resources via scheduling models. We defined scheduling models as abstrac-

25

I

tions that can be used to reason about timing correctness on physical resources. We argued that a consis-

tent set of scheduling models for all shared resources together with relevant figures of merit encapsulated

in the Systems Engineering Workbench (SEW) enable the systems architect to:

e Validate system level response time performance. This core capabilit~y ofthe scheduling models

facilitates all the capabilities listed below. Given a set of task run-times., I/O and synchronization

requirements, the scheduling models allow the Systems Engineer to determine whether all response

time requirements will be met.

* Quickly explore the system-level design space, and establish a firm baseline. Given a con-

sistent set of scheduling models of the system's components (CPUs, buses, networks, disks, etc.),

the systems architect can then quickly evaluate the viability of arbitrary system configurations. We

provided examples of that showed how the scheduling models could be used to decide which bus

arbitration scheme or LAN was most appropriate for a specific application.

* Expose the system overhead costs. The scheduling models directly expose the system overhead

costs associated with supporting various application functions. By exposing the costs of all system

functionalities, the system architect can then make sound engineering decisions as to whether he

can afford the additional functionality for his application.

* Facilitate system resource partitioning and management. The scheduling models provide the

right level of abstraction for the System's Engineering organization to interface with the Software

Development organization. Initially resource budgets can be assigned to the individual application

programmers which specify limits on CPU time, synchronization requirements, device 1/0 etc. The

Systems Engineering organization validates the system's performance relative to these initial bud-

gets. As the development cycle proceeds and actual resource requirements become available, the

System Engineering organization can then check to make sure that the system level timing perfor-

mance is maintained. In this way the Systems and Software Development organizations can work

together and have confidence at any point in time that the current baseline system is feasible.

* Quantitatively evaluate hardware/software boundary issues. Systems Engineers for high

performance embedded systems are often required to evaluate the cost/performance tradeoffs as-

sociated with special purpose hardware. Mraz [41 used a set of scheduling models as an initial

26

evaluation vehicle in his work developing a RISC-Based architecture for real-time computation. He

developed scheduling models for a conventional CPU/OS pair, a processor supported by an operating

system coprocessor, and dual threaded RISC processor that injects the operating system as a non-

interfering execution stream in application pipeline stalls. Using these three models he was able to

quickly quantify the expected gains associated with the differing approaches.

* Explore the impact of new technologies. The science ofbuilding scheduling models for arbitrary

technologies is maturing. Thus, we expect to be able to fairly quickly develop consistent scheduling

models for any emerging technologies. For example, there is currently a lot of work in packet switch-

ing networks. Although, we have focused most of our effort on shared media LANs, we believe that

we can readily model most packet switching networks.

* Optimize system configuration parameters. One of the most important capabilities that schedul-

ing models provide is that they allow the System or Software Engineers to optimize the system

configuration parameters.

The above work represents a solid first step to moving real-time systems development from an art to an

engineering science. However, there is still much work to be done, such as folding in the work associated

with jointly scheduling aperiodic and periodic tasks [5, 6]. The System Engineering Workbench needs

to be completed. The capability to address fault tolerant requirements eaid provide graceful degradation

properties also needs to be incorporated.

27

References

[1] D. Katcher, J. Lehoczky, and J. Strosnider, "Scheduling models of dynamic priority schedulers,"
CMUIECE 7Tchnical Report, November 1992.

[2] M. Harbour, M. Klein, and J. Lehockzy, "Fixed priority scheduling of periodic tasks with varying
execution priority,' Proceedings of the 1991 IEEE Real-.Tme Systems Symposium, vol. 1, pp. 116-128,
December 1991.

[3] E. Snow and J. Strosnider, 'Implications of overhead and imperfect preemption on real-time schedul-
ing models,' Tec-h. report, Electrical and Computer Engineering, Carnegie Mellon University, 1993.

[4] It Mraz, A RZSC-based Architecture for Real-fime Computation. PhD thesis, Carnegie Mellon Uni-
versity, Pittsburgh, PA 15213, 1992.

[5] B. Sprunt, Aperiodic Task Scheduling for Real-T-me Systems. PhD thesis, Carnegie Mellon University,
Pittsburgh, PA 15213, August 1990.

[6] J. Strosnider, J. Lehoczky, and L. Sha, 'The deferrable server algorithm," 7b appear in IEE Trans-
actions on Computers, 1993.

28

On the Structure and Dynamics of

a Deeply-Integrated Information System

Bruce I. Blum

Johns Hopkins University/Applied Physics Laboratory
Laurel, MD 20723-6099
bib@aplcomn.jhuapl.edu

This paper examines the structure and dynamics of a large, complex
information system that has been in operational use for more than a decade. The
paper begins by explaining how the study of this system is related to the
development of complex systems. It then introduces the modeling philosophy
used in the system's design, provides an overview of the system's architecture, and
evaluates 13 years of experience with its development and maintenance. It is
shown that, even though the organization of the system defies all current
standards of good practice, the resulting system is reliable, maintainable, useable,
and inexpensive to support. The paper closes with some questions about the true
nature of the conduct of systems engineering for complex systems.

Introduction

For the past half-dozen years, my research has focused on the nature of the software
process and how we may best implement and control it. To me, software engineering (which is
the-study of the conduct of the software process) is a form of systems engineering. Moreover,
with our growing reliance on software tools for design, test, and manufacture, software
engineering is coming to provide an excellent model for equipment fabrication. Thus, even
though the topic of this meeting is "complex system engineering," it is reasonable to accept a
large software system as a specialized instance from the target class in the expectation that it will
provide insight into the role of automation in the development of the large, complex, fault
tolerant, distributed, real-time, time-critical systems of the future.

This paper examines the 13-year history of a large, complex, distributed, clinical
information system [1]. The system is of special interest because it was developed and
maintained using an environment that hides most of the implementation details [2]. The result
is an architecture that is very different from those employed in typical information systems. The
system also is of interest in this conference because it is used to make life-threatening decisions,
it must be fault tolerant, and its data must be timely. Of course, the technology used for an
information system make these last properties much easier to implement than they would be for

This work was supported in part by the U. S. Navy, Space and Naval Varfare Systems Command (SPAWAR) under
contract N00039-91-C-OOOI, task VMAR9 with the offte of Naval Research (ONR) and the Naval Surface Warfare
Center (NSWC).

29

a Navy tactical system. Thus, this paper does not suggest that experience in a medical setting
is directly transferrable to a military application. Rather, the paper argues that if characteristics
of this clinical information system seem to violate conventional wisdom, then perhaps our
perceptions regarding those characteristics were poorly founded. It would follow that, if we must
adjust our understanding of the structure of information systems, then perhaps we also should
alter our conventions regarding complex, real-time tactical systems.

On Integration and Modularizatlon

Elsewhere I have argued that software development is a modeling activity [3]. The
models range in granularity from how a computer-supported product can resolve some domain
need (i.e., the requirements) to how the computations should be carried out (i.e., the source
code). An information system design is based on a model of some external reality. Surrogates
for selected entities in thz4 reality will be maintained as data in the system's database. Because
the external reality is deeply-integrated, the database should reflect its integrated character. In
many cases, however, the difficulty in implementing a system that operates within a complex
environment forces the designers to abstract away many of the important properties (and
complexities) of the external environment. This reduces risk and improves the processing of
selected functions. Unfortunately, the result is a distortion of the design model, which restricts
it to a segment of the real world model. As a consequence, it is difficult to extend system-
supported activities beyond the boundary imposed by the constrained system model.

For example, a clinical system may ignore all attributes of a patient other than the
patient's schedule. The resulting patient scheduling system will use some common patient
identifier so that it may link patient schedule activities with, say, billing activities. Furthermore,
an integrated patient scheduling system will associate providers (e.g., doctors, nurses) with the
patient visits, and they may even maintain individual provider schedules including normal office
hours, holidays, and other absences. Yet, even with a highly complex appointment system, the
basic activity being modeled is that of scheduling; there will be little about the system that is
unique to a health care setting. In fact, the basic system would be equally useful for a beauty
salon, if only the cost per visit were high enough to justify the investment.

The Oncology Clinical Information System (OCIS) was designed to assist the patient-
oriented activities in the Johns Hopkins Oncology Center. The model used to design OCIS is
derived from a model of the Center. Patients are treated as inpatients and outpatients; services
are provided by physicians, nurses, laboratories, the pharmacy, and registrars; therapy is
organized by protocol (both research and standard practice), and the therapy plans, status, and
analysis must be documented; visits, admissions, and resources are scheduled; and clinical data
are combined and displayed to aid decision making. This model is highly integrated. For
instance, the patient record must contain a history of all clinical results, diagnoses, and scheduled
activities; nursing information must indicate patient activities, individual schedules, projected
staffing needs, and resource assignments. In fact, the complexity of the model precludes its
complete definition. The model evolves as experience with OCIS builds; moreover, as the health
care team becomes familiar with OCIS, use of the system alters the real world model of Center
operations.

30

I believe that deep integration and evolving understanding are characteristics of all large.
scale., complex systems. When the complexity exceeds our ability to manage it, or when our
understanding does not permit us to approach the complete problem, we decompose the problem
by breaking it down into smaller, more manageable components. The principle of information
hiding is used to abstract away details external to the component of interest. As experience
accumulates, new uses for the modularized components are recognized and new decompositions
are experimented with. This, of course, is how hardware has evolved. Simon suggests that this
hierarchical approach is the essence of the design process [4]. Yet the jumble of the previous
paragraph suggests no such structure. Everything seems to be connected to everything else;
there is no natural order. Imposing an order by decomposition would introduce interfaces that
serve to disintegrate.

The question is, can we develop a highly integrated design that evolves as our
understanding uilds, and-if yes--can we implement and maintain that design? This paper asserts
that the OCI•. project experience answers both those questions in the affirmative. How this has
been accomplished has been documented elsewhere. What is important here is to recognize that
it can be done. Just as Bannister opened the way to a series of sub-four-minute mile records,
I would hope that the OCIS example would motivate others to examine this approach and
exceed our accomplishments.

Overview of the System

In its present configuration, OCIS operates on a network of 5 computers, maintains a
distributed database, and supports 250 terminals located throughout the Center. The database
provides online access to some half-million days of care for the 20,000 cancer patients treated
at the Center. The programs comprise a million lines of code, but this code is generated from
compact specifications. In early 1992, the OCIS design consisted of specifications for 9257
programs and a data model comprised of 2273 relations (called tables) and 3823 attributes
(called elements). The program specifications are very compact, averaging 15 lines in length.
1The functionality delivered by a program specification is roughly the same as that provided by
a 300-line program in a more verbose language such as COBOL Examples of program functions
are the management of a menu (together with help messages and error checks), the processing
of a request for a report, the listing of a report, and a reasonably complex computation involving
data retrievals. OCIS was first installed in 1976; this version of the system was reengineered
from the original system starting in 1980, and it has been in continuous operation since 1983.
Thus, the current implementation of OCIS is a large and complex information system that has
been used for a decade in supporting life-threatening decisions. The remainder of this paper
examines the structure of that system and how the structure has evolved.

Unlike the organization of a system whose design was guided by decomposition, the
structure of OCIS is best characterized as holistic. The specification is maintained in an
integrated database (called the application database, or ADB) in which the elementary items are
stored as fragments [5]. A program generator operates on these fragments to produce the
executable programs. (A program specification may cause the generation of more than one
executable program.) Examples of higher level fragments include program specifications, relation
(table) definitions, and data structures composed of multiple tables. Within the ADB there is
no concept of either module or file. A program specification may reference tables and types

31

I

(e.g, attributes or elements) without explicitly "including" them. In other words, all knowledge
within the ADB is shared by all components of the ADB. The program generator organizes the

ADB contents into modules for execution.

By way of contrast, a procedure-oriented implementation builds modules that define the
procedure, and it uses data structures to support the processing. The process has no access to
knowledge not explicitly specified or included within the module. An object orientation uses a
different modularization technique in which the module is organized around the data type;
operations on the data type are appended explicitly, and data type attributes in the inheritance
chain are included implicitly. In both these module implementations, the module serves to hide I
details, and one of the benefits of the module formalism is its application independence, which
is seen to foster reuse. With the environment used to generate the OCIS programs, on the
other hand, modularization is viewed as an implementation (and not a design) concern. Thus
knowledge of how to transform a design into an implementation is reused, and the system design
(Le., the ADB) is organized as a single, coherent unit. (The ADB can be organized into families
of applications, and segments of applications may be copied [6].)

How well does this approach work? The design of the present version of OCIS began
in 1980. Since that time, productivity has averaged one production program per effort day. In
a 1992 analysis, the net productivity was .7 production programs per effort day (computed by
dividing the number of specifications in the production system by the number of effort days
expended on the project since 1980). All maintenance and new development is the responsibility
of a staff of six. During the past 5 years, that staff has added new functionality to OCIS at the
rate of 20 programs per week. The number of program specifications in the design has increased
by a factor of 2.5 since the system was installed in 1983. Most of these programs represent
functions not available in the initial implementation; some of the new functions augment or
replace system features that were poorly understood at the time of original installation. Thus,
the design of OCIS has evolved as the users' understanding of its operation and potential
matured [7].

The claim just has been made that the design of OCIS reached its current state in
response to a changing understanding of its objectives. That is, as the model of the real world
adjusted itself to take advantage of the facilities provided by OCIS, the design model of OCIS
reacted to accommodate the modified needs. Because this operational experience took place
over a ten year period, one would expect to find that changes would take one of two forms:

The addition of isolated, modularized features. Here a new requirement is identified,
and a set of programs is specified to meet this requirement. The new function is
relatively independent of the remainder of OCIS; exchange is managed through well-
defined interfaces. Most extensions to traditional architectures are of this type.

The editing of existing features. In this case, new requirements are met by altering the
existing functionality and adding new programs as necessary. The resulting design cannot
differentiate between what previously existed and what was just added. The old and new
are deeply integrated, thereby reflecting the structure of the external reality served by
the system.

I now demonstrate that the growth of OCIS is an example of the second form. I
32

Demonstration of Integration

"lhble I contains a matrix that counts the number of program specifications by the year
of their initial definition and last editing. If the system additions were highly modular, then one
would expect to find few program specifications edited after the year of their initial definition.
Yet the table presents a very different pattern. In the 13 month period from January 1, 1991
to February 2, 1992 (the date the data were collected), a total of 4,094 programs were brought
into the editor. Of these, 1,049 programs were new programs defined during that period and
the remaining 3,045 programs were edited to accommodate the new programs. That is, in a 13
month period 44% of programs in the 9,257-program system had been either edited or added
by a staff of six full-time equivalents. (In an 1988 study, 1,084 programs were added and 2,170
programs were edited during an 18 month period, which meant that 49% of a 6,605-program
system had been altered.) By way of a side comment, 44% percent of the program edits were
made by someone other than the original designer, and the median number of program edits
over a 13 year period was 11. Thus, the design team did not experience undue difficulty in
working within this degree of integration.

Year Year of last update
DefinedTo 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 Total

To 1982 454 173 111 68 123 81 157 118 132 416 171 2,004
1983 204 156 48 63 58 64 41 75 188 63 960
1984 323 70 69 90 43 44 76 235 47 997
1985 115 97 48 39 34 65 259 52 709
1986 250 131 103 61 100 215 57 917
1987 186 87 72 83 201 73 702
1988 112 30 74 140 51 407
1989 208 156 288 86 738
1990 271 363 140 774
1991 643 254 897
1992 152 152

Total 454 377 590 301 602 594 605 608 1,032 2,948 1,146 9,257

Table 1. Distribution of OCIS programs by year defined and year last updated.

Table 2 provides another view of the integration of OCIS. It summarizes the relative
ages between a program and the programs it calls, the tables it reads, and the tables it writes.
As can be seen in the table, about 20% of all references to a program or table are to items that
were defined at least six months after the referencing program; moreover, half of those
references are to items defined 2 or more years after the referencing program's initial definition.
Thus, older programs are edited (e.g., a menu program is modified to provide access to a new
feature), and new capabilities are integrated with those that already exist.

Figures 1-3 depict the same data in a historical context. The relative ages of the
referenced items are grouped by the year that the referencing program first was defined. The

33

Years Mandts Years
Number 2 < 2-1 1-½ 6-1 t1 1-6 WI 1-2 > 2 Items

Caf Program 14 5 5 7 39 8 S 6 10 14,285

ReadTable 29 9 8 8 20 6 4 4 12 13,898

Written Table 14 8 7 9 33 7 5 4 13 5,919

Ibble 2. Relative ages of associated OCIS items as percent of total.
(Date of program definition relative to the date of referenced item definition).

items are organized into five categories: those defined at approximately the same time (* 6
months). those between 6 months and 2 years (before and after), and those more than 2 years
(before and after). References to items defined before the program may be thought of as a kind
of reuse of existing system resources; references to items defined after the program was defined
represent retrofits for integration. The time period covered may be divided into three activities:
1980-1983, development of OCIS; 1984-1986, evolution with constrained resources during user
orientation; and 1987-, mature evolution. Naturally, there were no older items to be referenced
during the rust two years of development, and there can be few retrofits for the newer programs.
The data provide the following insights into the structure of OCIS and its evolution.

Relative ages ofprograns called (Figure 1). Although most program calls are to programs
defined at about the same time, a relatively large number of programs in the original
OCIS system (1983 and before) were updated to reference programs defined significantly
later. In fact, approximately 20% of the calls in the original system are to programs
written at least 2 years after the calling programs. Once OCIS is in production, there
tends to be significant use of "utility" resources that are part of the existing baseline
(e.g., the calls to programs defined two or more years earlier). Nevertheless, in the
mature period, the use of older utilities is almost balanced by the retrofitting of existing
programs.

Relative ages of tables read (Figure 2). As one might expect, the data show that there is
a strong tendency for new programs to read existing tables. The database is an OCIS
resource, and new programs ought to combine existing data with the data defined for the
new features. (For example, new patient-oriented functions will reference the patient
name, which was defined as part of the initial OCIS increment.) It is not intuitively obvi-
ous, however, that the definition of new data structures will affect older programs. Yet,
the data for the development period show that many of the baseline progrmms were
modified to read data defined considerably after the program (e.g., 23% of the 1983
system's reads were defined 2 or more years after the program). This retrofitting of
programs to read newly defined data continues at a lesser degree throughout the life of
the system.

Relative ages of table writen to (figure 3). In a highly compartmentalized system, one
would find that the dates of definition for the tables and the programs that write to (i.e.,

34

Number of calls by relative age
2500 ,

2000 1-

1500 F

10001

5001-

1980 1981 1982 1983 1984 1985 1986 1987 1986 1989 1990 1991 1992

Year calling program designed

i1P 24 months before 6-24 month$ before, --- within 6 months

- 6-24 months after - 24 months after

Figure 1. Relative age of programs called by date of calling program definition.

Number of reads by relative age
2000,

15001

100

500 !

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
Year reading program designed

S* 24 months before 6-24 months before = within 6 months

M 6-24 months after ' 24 months after

Figure 2. Relative age of tables read by date of reading program definition.

update) them are roughly the same. (For example, in an object-oriented environment,
the dates of object and method definition would tend to be the same). Yet, as shown
in the figure, one fourth of the original system was modified to update tables defined 2
or more years after the program's definition. Furthermore, the data indicate that new
programs often write to tables developed considerably earlier (e.g., of the writes in
programs defined in 1986, 35% were to tables defined 2 or more years earlier).

35

i

Number of writes by relative age
10001

SooI

400
2001

0*
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

War writing program designed

- 24 monthS before 0 6-24 months before = within 6 months

6-24 months after E , 24 months after

Figure 3. Relative age of tables written by date of writing program definition.

This analysis of the relative ages of the OCIS programs and the items with which they interact
demonstrates that OCIS is a deeply integrated system. There are few changes that do not
exploit existing system features, and few existing features are unaffected by the introduction of
new capabilities. I assert that this degree of integration is implicit in an information system
specification, but it is the lack of adequate support for development and maintenance that
inhibits its realization. After all, if maintenance is difficult and expensive, then it would be
prudent to localize change and establish clear module boundaries.

Concusion

This paper has shown that there is at least one large-scale, complex information system
that has operated effectively in a critical environment and that exhibits a non-modular, deeply
integrated design. By conventional standards, the amorphous nature of the system architecture
would be considered a poor design; one that would be very difficult to maintain. Yet the history
of this project is one of high productivity, easy maintenance, and flexibility in responding to
changing needs. Based in the widespread difficulty exhibited by other orgnizations in
maintaining clinical systems, I do not believe that the success of the OCIS project is related to
the specific domain in which it operates.

In much of my work I have tried to distinguish between the modeling of the software
system intended to meet a need and the modeling of the implementation that will satisfy that
need. Wo very distinct classes of model are involved, and if we begin with the wrong model,
then we will be forced to structure our reasoning within the context of that modeL Modeling
a problem domain should be holistic when we are concerned with comples, integrated problems;
modeling the solution's implementation will be modular. Our heritage of hardware development
has taught us to use decomposition to reduce large problems into smaller, more solvable

36

problems. This approach was reinforced by the early models of human information processing.
Newer, connectionist models recognize the parallelism that permeates the universe. Computer
architecture is moving to exploit this parallelism; the emerging concept of concurrent design is
another of these transitions from a serial to a parallel process.

The point of this paper, therefore, is that perhaps we are looking at the problem the
wrong way. For many years we have imposed a hardware-oriented discipline on software
production, and the results have been satisfactory. Clearly, we have accomplished a great deal.
Yet, with OCIS, an apparently chaotic organization also seems to work very well. Our challenge
is to understand why it works, so that we can apply its lessons to the tactical systems that the
Navy needs. That, of course, is the primary focus of my research.

References

I1] J. R Enterline, R. E. Lenhard and B. I. Blum (eds), A Clinical Information System for

Oncology, Springer-Verlag, New York, 1989.

[2] B. L Blum, TEDIUM and the Software Process, MIT Press, Cambridge, MA, 1990.

[3] B. L Blum, Software Engineering: A Holistic View, Oxford University Press, New York,
NY, 1992.

[4] H. A. Simon, The Sciences of the Arificial, MIT Press, Boston, MA, 1969.

[5] B. I. Blum, Representing Open Requirements with a Fragment-Based Specification, IEEE
Dans. Sys., Man, and Cyber., (in press).

16] B. L Blum, The Fourth Decade of Software Engineering: Some Issues in Knowledge
Management, Int. J. Intelligent and Cooperative Information Systems, (in press).

[7]" Blum, B. L, The Dynamics of a Clinical Information System, MEDINFO 92, pp. 168-173,
1992.

I
i
I

37

INTEGRATION COMPONENTS, SPACES, AND CELLS

Jeffrey 0. Grady
Gem l Dymcs Space Sysms DMsuI

Sen the Stage for on specialization. Our engin i o nzation must
ntgration DeemKoftlom select is personel from the sam pol as everone ese,

humanity. We humans are kowledg limited and we
The specificatio concept development design, and ye the problem caused by that limitation through
verification activities fo complex systems involving spealization.
budwa, sftwa• and human action rqur intensely
cooperativ work among many talente specialized Thereor we will organiz our personnel into
engieers none of whom awe capable of understanding functional speialt (departments) led by functional
the total problem that the systm must solve in complete department Chieft These Chieft will be responsible for
depth amco t complete system. Specalition ms providing all of ou programs with qualified personune
with it the need for integration of the many small skilled in using a particular toolset and following the
problem solutions into the total system oution standard departme procedures proven effective on past

programs. We insist on standarc, that are continuously
The rebirth of the systm approach in the form of PD inproved, because we wish to take advantage of the
or concurrent engineering stumbles in many companis pra practicepacie template used by great I
due to failure to uprade communication techniques and athletes.
integration processes to the needs of the IPD
environment These two failures are inter-related and On a given program the product will be organized into
must be unraveled by dear lines of authority and sub-dements that can be worked oan by one or more
responsiility for the teams focused on the organization Integrated Product Dvdeopmemt (IPD) Teams and we
of the product and a dear and universal understanding will assign ou personnel to these teams which will form
of what system integration, the subject of much of the the principal personnel supervisoy structure within the
communication that must take place, is. program. The work of all of the IPD Teams on a given

program will be coordinated by a System Engineering &
It would be convenient if we could describe all of the Integration (SEI) Team.
facets of system integration in terms of a single entity.
The author is convinced, after years of work, We will organize all program work into process steps
observation, and study in this field, that many of us linked to product entities under the responsibility of one
accept incorrectly that integration is a single activity, or more IPD Teams. Each process step will have a set of I
Few of us are able to describe how that single activity is goals and simple task description. We will map our IPD
performed, howeve. Many people assign the term Team responsibilities to the processes and identify
"system integration' a mystical quality. Whatever it is it leade for eaih process. All of the Fproces will be laid I
is the answer to every system engineering problem and into our integrated schedule with dear start/stop dates
seemingly just connecting the term in the same sentence and budgets which reflect back into the IPD structure.
with a problem is sufficient to define an approach to the Each process will have dearly identified information
integration process in our proposals and conversations. and/or material product outputs that are needed in other I
We will see in this pape that the integration process can processes as inputs. Also, each process step will have
be decomposed into several parts and these parts associated with it a simple criteria by which it isexplained in an uncomplicated way. System integration possible to determine when the task is complete in the Ithen becomes the sum of those parts. form of a completion criteria.

We begin with an acceptance that an engineering Integration Componmets
organization that must deal with multiple system
development activities, should organize in a matrix These assumptions and selections leave us with the
structure. The matrix has the advantage of focing day- problem of cmbinin or integrating the wor of may
to-day work on specific program problems while people in differM functional disciplines, working on
providing a good environment within which to improve different product system components, in many differeat
the organization's skills, methods, t-,ols, and knowledge process steps over time. We define these three
through continuous process improvement. We should fundamental integration components as function,
also accept the good sense that we cannot beat the odds product, and process respectively. Be very careful that

38

you understand that we have used the word function or more specialists in that one functional discipline. The
here to mean functional organization and not product other two variables have null values in this limiting
sytemn function, case.

In each of these components, we have to concern Similar planes can be constructed perpendicular to the
ourselves with two fundamental kinds of integration: co- other two axes at different points on those axes to
:componponentonent integration. In capture all of the coprcess and co-product integration

addition, we have to account for the possibility that one work. The careful reader will observe that every point in
or two of the components is not involved. This means the three-space, then, corresponds to some combination
we have a three-valued situation: co, cross and null of co and cross component integration for the three
values. With three variables, each with three values, it is components.
obvious we are working with 27 (3 cubed) different
integration possibilities. It is helpful to have a picture of Let us now define the three integration components in
this problem to better understand all of these terms of their possible values. Three combinations are
possibilities, nulls, meaning no integration for that component: Null-

Function, Null-Process, and Null-Product integration.
Unfortunately, we can't easily illustrate the three-valued The other six possibilities are co and cross combinations
relationship for each of our three components, so our with each of the three components. Let us take each of
visual model will disregard the null possibility for each these six cases in turn assuming, in each case, that the
component. Figure I illustrates the three components as other two components have a null value for the moment.
a three dimensional system. We can imagine that we can
assign positions on the function axis to discrete Co-Function Integration coordinates the work of two or
organizations in our functional organization such as more persons from the same functional department
reliability, structural design, quality assurance, etc. (specialty discipline) to ensure they are all using the
Similarly, we can assign positions on the product axis to same tools, techniques, and procedures in an appropriate
the elements of the system (avionics system, on-board fashion and that their results are consistent with other
computer, circuit card, transistor, etc.) in a hierarchical work on one or more programs or systems. This task is
fashion, Finally, the third axis can have positions the responsibility of the senior program functional
marked out corresponding to the processes on our specialist for the project or the functional supervisor, in
program process diagram, such as identify item X the case where all company projects are the target of the
requirements, design item X, and test item X integration work.

Cross-Function Integration coordinates the work of
rumMOL. persons from two or more functional disciplines in

aM oq search of sub optimal design and specialty engineering
solutions needing re balancing, mutual conflicts between
specialty requirements or the corresponding design
solutions, available unused margin to be repossessed and
"applied more effectively, and wayward interpretations of
the project or product requirements that may lead to
conflict. This is a program responsibility that may fall
upon an IPD Team Leader, task principal, or person
from the System Engineering & Integration Team as a
function of the relationship of the work to process or
product and the integration level.

Co-Process Integration coordinates the work of two or
more persons working in the same program process to

Figure 1 Integration Components. ensure that they all are focusing on the same process
needs within available budget and schedule constraints.

For a given functional organization, all of the work that This task is accomplished by the assigned task leader
a specialty discipline does can be thought of as being who is responsible to achieve the task goals on time and
within the plane passing perpendicular to the function on budget.
axis at that function position. The task of integrating all
of the work on that plane is called co-function Cross-Process Integration coordinates the work of two or
integration, the integration of work accomplished by two more task teams working different processes. It seeks to

39

i

ensure that the work of the two or more teams is items to ensure that all interface terminals and media
mutually consistent and driven by the same program are compatible both physically and functionally. This

goals. This integration task is the responsibility of a work could be as simple also as ensuring that all items
program person are painted the Correct color, have satisfied a particular

specialty requirement as in being maintainable as
Co-Product Integration coordinates the work of two or defined by an ability to remove and replace in 10
more persons developing the design solution for a minutes It is difficult to talk about this form of
particular product item. This may be to develop an integration without linking other integration
integrated set of product item requirements, evolve an components.
optimum synthesis of those requirements in terms of a
design conceptk ensure that all of the cooperating Integration Spaces I
specialty views are respected in the design solution, or
integrate the test, analysis, and design work associated Integration work seldom falls into one of these pure

with that product item. Where an item requires a special cases. Commonly we have to deal with more I
test article, such as a flow bench for a fluid system, this complicated situations involving combinations of two or

work should also ensure that the test article properly three components with mixes of cross, co, and null

reflects the same requirements and design embodied in values. Figure 2 offers four particular examples of these

the product item. possible combinations, or spaces, for further discussion.
Once again, we disregard the null value case to enable

Cross-Product Integration is the commonly conceived simple graphical portrayal in three dimensions on two
integration component that most people would first dimensional paper. I
think of in response to the word integration. It focuses
primarily on integration of interfaces between product

ISOLAED COSS-FNCTINAIOLATED CO-FUNCTIONAL.ISOLAOT c.oss-FITEATIONA .WCRO6S-4OUCT. CO-TASK INTEGRATION MYCo.PRoO UCT. Co.TAsK VM ORA TIC _ VINI 81 M TA U W ITIN, A SPECIFIC TAS
AN IPD TEAM ON A SPECIFIC TASK T

- 'AWWOM

CO-SITRIiACWmawwS

CROSS-FNCTIONAL, CO-PRODUCT, CRO-UNCI•ONAL, CROS-POIDUCl',
CROSS-TASK INTEGRATION BY A CROWSTASK INTEGRATION

PRODUCT IPO TEAM FOR THE WHOLE PROGRAMSIr,-,

I I"

Figure 2 Integration Space Examples.

In Table I we use a simple tertiary counting scheme to three variables. There can be no other forms of

ensure we have not omitted any combinations of the integration work than those listed in Table I given that

40

we have included every appropriate integration where:
component It would be possible to add one or more C - the number of integration
components to our list in addition to function, process, components and
and product The effect would be to multiply the number n - the number of values for each
of different integration spaces. The number of variable.
integration spaces (S) is predictable as follows:

S - Cn,

Table 4-1 Integration Space Identification.

ID FUNCTION PROCESS PRODUCT INTEGRATION TYPE NAME

0 NULL NULL NULL INDIVIDUAL EFFORT
I NULL NULL CO ISOLATED CO-PRODUCT
2 NULL NULL CROSS ISOLATED CROSS-PRODUCT
3 NULL CO NULL ISOLATED CO-PROCESS
4 NULL CO CO CO-PROCESS & PRODUCT
5 NULL CO CROSS CO-PROCESS/CROSS-PRODUCT
6 NULL CROSS NULL ISOLATED CROSS-PROCESS
7 NULL CROSS CO CROSS-PROCESS/CO-PRODUCT
S NULL CROSS CROSS CROSS-PROCESS & PRODUCT
9 CO NULL NULL ISOLATED Co-FUNCTION
10 CO NULL CO CO-FUNCTION & PRODUCT
I I CO NULL CROSS CO-FUNCTION/CROSS-PRODUCT
12 CO CO NULL CO-FUNCTION & PROCESS
13 CO CO CO ALLCO
14 CO CO CROSS FOURTEEN
15 CO CROSS NULL CO-FUNCTION/CROSS-PROCESS
16 CO CROSS CO SIXTEEN
17 CO CROSS CROSS SEVENTEEN
1S CROSS NULL NULL ISOLATED CROSS-FUNCTION
19 CROSS NULL CO CROSS-FUNCTION/CO-PRODUCT
20 CROSS NULL CROSS CROSS-FUNCTION & PRODUCT
21 CROSS CO NULL CROSS-FUNCTION/CO-PROCESS
22 CROSS CO CO TWENTY TWO
23 CROSS CO CROSS TWENTY THREE
24 CROSS CROSS NULL CROSS-FUNCTION & PROCESS
25 CROSS CROSS CO TWENTY FIVE
26 CROSS CROSS CROSS ALL CROSS

If for example, we concluded that there should be five effectively apply this knowledge to a specific product
components instead of the three covered in this paper, item and in a particular single process. This is why we
and three values (co, cross, and null) for each specialized, after all, to create a human task that is
component, we would have 53=125 integration spaces. within the power of a normal, single, specialized
As you can imagine this could get out of hand very individual to master. We assume that each specialist can
rapidly making the description of integration more carry on an internalized conversation with themselves
complex than the work itself. Three components and and use the power of their specialized discipline to solve
three values appeared to the author to be a good the small problems we have tried to frame in our
compromise between completeness and understand- decomposition efforts.
ability.

Similarly, the ALL CO integration space is usually not
Each integration space involves a merger of a unique very interesting to a system engineer since it involves
grouping of three particular values for dhe components people from the same functional department performing
and represents one integration mode useful in one or work in the same process step, for the same system
more particular situations. element.

Of the 27 integration spaces, we can dispense with One other fairly simple integration space to explain,
INDIVIDUAL EFFORT integration immediately. We though the most complex of them all in practice, is ALL
must assume that a single individual is fidly capable in CROSS integration involving cross everything. When a
their field of specialized knowledge and able to member of the SEI team integrates the work of several

41.

members of two IPD teams developing the design of two consist of a less complex combination of integration
different product elements and the work of a facilities spaces.
engineer responsible for the factory ttat will assemble
these two elements and a tooling designer responsible Program World Line
for the manufacturing equipment that will hold the
elements during mating, we have an example of this So, the integration process is more complex than we
kind of integration. The reader will be able to imagine might have first imagined, composed of a finer structure
several other cases of this integration space. than we might have thought. But the complexity does

not stop here. We must not only apply each of these
We have given examples now for nine of the 27 integration spaces well within the context of the
integration spaces: including the six isolated integration integration cells defined for the program, but we must
cases, INDIVIDUAL EFFORT (or ALL NULL), ALL apply them in a pattern coordinated with the program
CO, and ALL CROSS. This leaves 18 remaining to be schedule. Figure 3 illustrates this need by placing the
explained with at least one example. Some of these 18, integration spaces coordinate system on a program
you can see from Table 1, are very difficult to name so world line. Throughout program passage on its world
we will simply use the ID number for a name. line (network or schedule), appropriate specialists must

apply the appropriate integration spaces to the planned
Integration Cells integration cells in accordance with in integrated plan.

To the extent that we can reduce aggregate program
In almost any given system development work situation, work by early identification and resolution of
we will find it necessary for some combination of the 27 inconsistencies between product and process elements,
integration spaces to be applied. Very little system we encourage success in system integration. Ideally, we
development work can be accomplished in total should be able to do all work error-free on the first pass.
autonomy today. This phenomenon appears because we
have had to specialize very finely to master enough of
the available knowledge base to be competitive. The
number of these combinations is finite but quite large for
a large development program.

We have many options in grouping all program work
into unique combinations of integration spaces but the
best way to do this is probably driven by the program
tasks that would appear on a program task network.
Each program task has associated with it some set of
functional disciplines performing work on some
particular combinaton of product elements. Many of
these tasks, possibly most, will require some form of
integration in the context of some combination of the 27
integration spaces defined above. Let us call any one of
these combinations of task, product, and functional
organization an integration cell.

The more finely we divide the overall program into Figure 3 System Development World Line.
tasks, the more unique integration cells we will have.
The more finely we assign JPD teams to develop the Now we can answer the question, "What is system
system, tk• larger the number of integration cells. The integration?" It is the rich mixture of three integration
more functional disciplines that must be assigned to the components applied in combinations, defined by the
program, the more integration cells that will be resultant integration spaces, to the work confined to a
necessary. At the same time, the larger the number in finite number of integration cells across the program
any of these integration components, the more simply world line that actually comprises system integration on
we can describe each integration cell because they will any given program.

42

Cowplex Systems Engineering Synthesis and AssewnmeAt Technology Workshop, July 20-22, 1993

An Efficient Anproach to Systems Evolution (EASE)

Thomas C. Choinski, (203) 440-5391
John G. DePrimo, (203) 440-5723

Naval Undersea Warfare Center Detachment, New London, CT

"Today. we are in the final stages of a true "indhuka rewlwion" in compuaer hardware and software which has
totally transformed the idsy. Navy has no choice but to adopt these changes. By leveraging the Industri
revoution, Navy can reap great benefis in increased capabilit and decreased cast. If the Navy continues so
develop unique product lines, a will likely face spiraling costs while falling further behind in capab&l."I

NRAC 91-1 Office of ASN RD&A

INTRODUCTION
EASE will introduce new products and processes

Political changes throughout the world, fiscal to transition technology in an affordable mamer. The
constraints set by the United State Congress and a development of computer aided system engineering
shift in corporate product planning have created the design tools and the strong emergence of high
need for a new acquisition environment within the performance computing and communications (HPCC
Department of Defense (DoD). The Director of technology, will make the transition feasible. This
Defense Research and Engineering (DDR&E) has set paper discusses these components further in the
guidelines to direct these changes. 2 The guidelines Vision and Technology Transition sections.
consist of 7 Thrust Areas. The concept for The HPCC Program, funded by the Advanced
transitioning technology described herein specifically Research Projects Agency (ARPA) through the
addresses Thrust Area 4 (Undersea Superiority) and Federal HPC Program,3 offers the potential for
Thrust Area 7 (Affordability). TERAFLOP (1 trillion floatin point operations per

DoD must C second) computing
facilitate the process u capability. EASE
used to transition A,, .. will use HPCC
technology into .- =; _- *- - technology as an
warfare systems to L enabling force to
achieve affordability f 5 t $ $ CONSISTENT $ f $ S showcase potential,
objectives. No 0--V.M iM. future alternatives
longer can DoD g operad"m olm U " co to the military
build warfare -- T.,A•h'.s system acquisition
systems focused on 41C $INCONSISTENT $* * u process.
delivering increased M" This paper
performance to outlines the EASE
oppose specific. pre- A concept. The paper
defined threats. L be I Ds--• .mvT. T- discusses: the three
Today's warfare primary issues
systems must be Figure 1. Product Versus Pl•orm Life Cycles addressed by EASE,
able to adapt to the new vision for
unpredictable world transitioning
situations similar to the Gulf War. technology, and the specific warfare system

The Efficient Approach to Systems Evolution applications selected to showcase EASE.
(EASE) concept engendered a vision for developing
warfare systems in the future. The concept seeks to MURS
make this vision a reality by capitalizing on key
enabling technologies. EASE has set out to: The EASE concept focuses on three issues

Foster the application of fast paced, systems engineers confront when transitioning
emerging commercial technology to technology into warfare systems: commercial productthe development and acquisition of life cycles, DoD policy, and the tradeoff between
theordeelope nt w and acquimsition of general commercial based processing and application
affordable warfare systems. specific (point technology) resources.

43

Complex Systems Engineering Synthesis and Assessment Technology Workshop, July 20-22, 1993

The first issue concerns the changing rate of new increased utilization of general purpose commercial
product development in the commercial sector. based processors. Figure 3 illustrates this vend.
Twenty years ago the commercial sector distributed Warfare systems designed during the 1960's
computer products with life cycles greater than 10 primarily used point technologies (i.e., special
years. Digital Equipment Corporation's (DEC) VAX purpose designs) to achieve increased performance.
computer exemplifies this phenomena. DoD could During the 1980s, engineers designed warfare systems
transition products with 10 year life cycles easily, that incorporated commercial based processors, like
since the 10 year cycles minimized the number of Motorola's 68030;, although, designers placed these
technology upgrades for Navy platforms used for 30 processors on militarized circuit cards.
years (Figure 1). Consequently. resulting architectures, consisted of an

However, today's Systm mnDesign ioes amalgam of commercial
commercial computer based technologies and
companies have special purpose designs.Funmlooat
accelerated their time to = wkomtI Once again engineers
market. 4 As a result, Modifd concentrated on
product life cycles have COTS performance.
decreased to less than 5 S*`bO UMsgSaol NW The next step
years. In some cases, NofS FumnllquIMIU continues the trend

life cycles last less than uitowards general purpose
1 year. DoD has Econ@•mica commercial based
difficulty transitioning Conmideraoiciw processing technology.
these rapidly emerging One alternative uses an
commercial products into ppaemerging technology,
warfare systems. like the one promoted
Shortened commercial by ARPA's High
product life cycles require Figure 2. MIL-STD 2036 Policy Performance Computing
frequent technology and Communications
upgrades. The current acquisition process can not Program. In fact, the
keep up with the rate of change of technology, vision propagated by EASE uses HPCC technology

The second issue deals with DoD Policy. For as an enabling force.
example, the Navy has changed the policy concerning
the utilization of commercial off-the-shelf (COTS) VISION
products. In the past, the Navy demanded
militarization of equipment for shipboard use. The The first step in achieving the EASE vision
Navy granted waivers for using commercial equipment entails the creation of a "homogeneous" warfare
in military systems. DoD's aforementioned focus on system. HPCC technology offers one way to obtain
affordability has reversed this policy. Accordingly, this goal.
MIL-STD 2036 stipulates the reauirement to use non- The homogeneous
developmental items HPCTedvm[W Track warfare system sets the
(NDI) anid COTS. AW11 0-rra"ti~mso stage for affordability.
Program managers kwb,,Un USA Figure 4 illustrates

mu t usif si g ~hwM ON how each function in arugged and militarized _

equipment with an U.YK-.Totomhudwm warfare system (e.g.,

operational, service or 970 acoustics ,

economic consideration. commnications.
This policy essentially ISOaMSPiU photonics, etc.) can use

compels a cultural G -. H!POC a generic HPCC based

change within the C--eh k- 2000 processor; hence, the
caeet homogeneous nature of

Navy. Figure 2 Pmm the architecture.
illustrates the process Note, however, thatinvolved in MIL-STD2036.n Figure 3. Commercial Based Processing Trend hetergenous

processing resources do
The third issue exist within a given

addresses a trend in warfare system architectures. function. For example, the acoustics function
Analysis of warfare systems that have evolved over contains a receiver, -PCC computer and workstation.
the last thirty years uncovers the trend toward the Similarly, HPCC technology also contains

heterogeneous processing resources.

44

Complex Systems Engineering Synthesis and Assessment Technology Workshop, July 20-22. 1993

The homogeneous warfare system achieves each able to leverage the process and product
affordability by using one software development innovations of the original product.6
environment for each function, and by minimizing the The homogeneous warfare system provides the
number of card types across the system. The warfare foundation to transition achnology in the mine sense
system also can reconfigume computing resources for as the personal computer analogy. However,
low duty cycle functions. The applications section transitioning technology demands more than an
discusses meconfigwunn. ecn

General purpose fo F
commercial based Ac~ude statio n conraints mandale
processing fosters DoD's need to
the transition of om H- .• M revitalize the
future technology. L, transition process.
The warfare system No"*
can use either RUM Rev .PC I I .
commercial or station TECHNI)LOGY
rugged equipment, " [T•
but, land based Phone Rece I
developmient The D

faciltiesResearch and
commerciue Figure 4. Homogeneous Warfare System ManWmt uid

equipment. discusses the push
Scientists and engineers use the land-based facility tohnology. 7

develop new algorithms and new functions while and vol of tec hno o f-The technology push
performing R&D. Under the scenario where only involves advances in the state-of-the-arn which occur
minor differences exist between the architecture in the in industry independent of emerging operational
laboratory and the system at sea, systems engineers requirements. The technology pull encompasses
can efficiently port the software to the warfare system, advances in operational requiremept-' which surface
Utilization of a HPCC software development apart from the state-of-the-art in - •hnology. The
environment enables software portability into the EASE concept introduces a third category into this
warfare system described in figure 4. Figure 5 depicts paradigm, the pace of technology.
this efficient process The pace addresses the rate at which the DoD can

On the other mm transition new
hand, systems Development] Efficiency ideas from the
engineers can also 6.2,6.3& 6A Por1aplty push and pull

transition new I Oulck Reaction categories into
hardware and the fleet. DoD
software advances needs to create an
from the Fleet Warfae environment
commercial sector F Syem Reuse (Spares, LabAJnlv) which simplifies
as shown in the d' d• the transition of

lower right hand emerging
corner of figure 5. Warfare System technologies.
Succeeding NO_ Ufe Cycle Figure 6 proposes

genertions oow Ns44 a Technology
generations of rece 2 for I " Commercial Insertion
commercial with same functlonality) 1.nrm Cycleen
product families "The Push, Pull and Pace Environment

can transition into (TIE) to
the warfare Figure 5. The Vision accomplish this
system. objective.

The IBM PC Commercial
serves as an analogy. IBM tied their personal trends suggest a 3 year transition cycle; in other
computer to Intel's microprocessor family. The words, technology should transition within 3 years of
80486 replaced the 80386SX; the 80386 succeeded the introduction from either the push or the pull
80286. Over the life of the 486 product, Intel will categories. The 3 year transition period requires
introduce a host of derivative products, each offering moving a warfare system product from the fuzzy front
some variation in speed, cost, and performance and end of development to a well defined implementation

decision. The fuzzy front end describes the beginning
phase of product development. During this phase a

45

Complex Systems Engineering Synthesis and Assessment Technology Workshop, July 20-22, 1993

priduct requirements may be ambiguous. Moving to showcase the EASE concept. The following section
a well defined implementation decision will require introduces two specific warfare system products
the completion of the fundamental tradeoff analysis which focus on affordability.
between development cost, time. life cycle cost and
performance.8 The Technology Insertion WARYAUR• EYFrM APPLICATION
Environment expedites the tradeoff analysis.

The Technology Insertion Environment can An assortment of warfare system applications
transition research and development (R&D) that could showcase the EASE concept Figure 7 outlines
replaces oldm generations of technoloiw. Likewise. c* the metrics used

the TIE can focus 01"N temrisud
on technology uI Sto n gui esthfusi) selectionpoe ss
fusn 1The EASE
Technology fusion eL concept could
refers to the have included (and
process of ___USH-of"IL ultimately may
technologies in a Csinclud

hybrid fashion. 9 PACEThis pproch VIto-~ L~f TIEpliwcations.
This approach Indeed, EASE has
applies partilarly a ,Jo nearly universal
to combinations r military
from the push 9Irw~v~ application.
and p u I I _UnderWsea Werf Pteonqm Exceptions
categories, as well "30en OM include functions
as hardware and like cryptography
software. which remain

The picture in Figure 6. The Pace of Technology Transition special purpose.
Figure 6 portrays Examples of
the Technology Insertion Environment as pieces of a products considered include expanded TB-29 towed
puzzle. These pieces provide the infrastructure to array processing. TB-29 focused beamforming and
transition technology. The pieces include but are not automated contact followers offer dramatic manning
limited to: logistics, concurrent engineering, rapid reductions relative to current processing techniques.
prototyping, requirements traceability and simulation. This application would necessitate substantial
The EASE concept has identified numerous pieces to processing throughput by concurrently processing
the puzzle, but has yet to determine the appropriate fit thousands of sonar beams. ESM (Electronic Warfare
for the pieces. DOD needs to research this ar to Support
mature the aFORma Itff, measures)
concept. The -A `C1W AFOR ILT Measres

Alm andheamlD oT presented another
Engineering of other noASW mslus-onh 1CONTROL D H consideration,
Complex Systems AD RR .c tComplex- Sysems t4adto to Wortel wate UNDERSAF a u s in .
Block developed SUPEnIomW E 6 processing
by the Naval Panke and MF•ald* receive T

"Surface Warfare t eMETt•RUT A very similar toSuraceWararemaus(,w.,•,,,,,.,@)AREA 4 R

Center, and . Ees(maatbm' E acoustics (i.e.,
sponsored by the - 80 . ne.w wated A A/D conversion,
Office of Naval .P*N#.tme AmAPm1.9V signal processing.
Research, has 19' 11-0" ,Orm and data
developed tools -This lMlethI provkdes an processing).elNem iv, ex WWOnclec t IpeI Ulty
suitable for the lower -- p .to WAA "rZ r However, ES M's
Technology FY 9. signal processing
Insertion (e.g., FFT's.
EnvironmenL correlation, and
Successful Figure 7. Application Selection Criteria feature extraction)
technology require on the
transition depends order of 100 MIPS. Some acoustic sensors require
on the Technology Insertion Environment, higher processing rates than ESM.

The EASE concept provides a novel process for The processing required for the Wide Aperture
transitioning technology. Many products could Array (WAA) and photonics (i.e., periscope

46

Compex Systems Engineering Synthesis and Assessment Technology Workshop, July 20-22, 1993

processing) have optimum attributes to showcase benchmarked the efficiencies. Intel executed "static"
EASE. These disparate, multi-CWLOP applications benchmarks to compute the efficiencies (i.e.,
can demonstrate virtually any submarine or surface computational nodes were not interconnected).
application through extrapolation. For example, one Therefore. table I efficiencies do not account for
of three monochrome sensors in the ARPA developed operating system. 1/0. and TADSTAND demands.
non-penetrating periscope (NPP) forms an image NUWC's experience with massively parallel
1024 x 1024 pixels by 10 bits/pixel, or about 1.3 processing through the Advanced Sonar Signal
Mbytes/image, and captures 30 images/second. Processor Architecture Project (ASPA) indicate
Combined with advanced image processing algorithms systems engineers can expect to achieve 10%
involving enhancement and/or replica correlation, this efficiencies in tu.
massive quantity of data yields a 10 GFLOP In any event, Intel did use FORTRAN instead of
minimum real-time "assembl lan e to benchmark their efficiencies.

The WAA They used a high
sensor consists of _2M_ . ' level language tosno .. Of L" 2M .1isix panels of Fm U. Est point out the
elements attached c.Pso san 14% IM high level
to the side of a moPws Ms 14% 1.14 p0.gr16ing
submarine. The gU I "'6 "M 1in sJ7 capability which

hmn~me Om uFFT 11 a% 1.3number of . xo L 14% 1.7 lends itself to
elements present a upsw d owportability of
heavy _____M_ __, application
computational _ _ _ _ _ _ __ _ _ _ _ _ _ software. Figure
load. Other 8 depicts an
reasons led to the Table 1. WAA Processing Requirements inovple
selection of WAA involving
besides the heavy "porting"
computational load for beamforming and detection applications from a commercial Intel Paragon to the
processing shown in Table I. For example, WAA has Honeywell ruggedized unit with minimal rewrite of
greater potential as a shallow water sensor than towed the software. The EASE concept includes the
arrays. Towed arrays constrain the maneuvering and portability of software as a major feature.
speed of a submarine to avoid dragging the array on The current Intel XP/S-35 has a peak throughpu.
the bottom. In addition, the frequency response of the which matches the requirements outlined in Table I.
WAA sensor is well "tuned" to emerging post-cold Honeywell expects to increase processing density to
war contacts of interest. The implementation, sized 10 GFLOPS/cu. ft. in FY94, and to 100
in Table 1. expands functionality: (1) full detection GFLOPS/cu. ft. by FY98, through packaging and
coverage excluding water cooling.
baffles in azimuth *f ~ Sftware 8.0tw. With these
and D/E; (2) a -90 51 processing
floating point vice so Pwtabft - rtebw densities: (1) the
one-bit clipped LMan4:ft M a.mzL Ft total size of a
('"DIMUS) h. Pag M M XP5.Ho.%r jwell -4 *y Ft' warfare system
beamformer to could shrink
enable enhanced Figure 8. HPCC Packaging Payoff considerably; and
medium frequency (2) low processing
active receive and efficiencies become
improved detection in cluttered environments; and (3) less significant (e.g., 10% as stated above).
interpolated detection beamforming to enable the The priorities of the Navy have changed, leading to
addition of automated contact followers for reduced a broad assessment of the future direction of United
manning requirements. When referring these attributes States' Maritime forces.10 With the end of the Cold
back to the figure 7 application selection criteria, the War, U.S. military strategy has shifted from
reader will find close agreement. deterrence of global conventional and nuclear war to

NUWC and Intel engineers constructed the data in the protection of vital national interests in regional
Table L NUWC described the signal processing, and crises, contingencies, and conflicts. While all
computed the sustained throughput requirements based elements of the Armed Forces have imporuant roles to
upon sample rates, the number of beams, and the play, America's nuclear-powered submarines are a
number of sensors. The sustained throughput decisive component of the new military strategy. The
requirement approaches 12 GFLOPS, most of which submarine will help provide the flexible forward
the beamformer consumes. Colleagues at Intel

47

I
Complex System Engineering Synthesis and Assessment Technology Workshop. July 20-22. 1993

presence a• d crisis

capabilities that aabS

have been the $bm The authors
cornerstone of our would like tiank

national defens.' 1 IW Alo Mr. Michael
The requirement bmw- _ Amarl. the

for total warfare OTA chnicrvewal
system flexibility a;i k a w, of this papwr,0Yo --i "- ,h well a the peopleNvli
provides the key to C NWwl stepol

acconundatangat the NavalI
this evolution. Undersa Wware
Warfare system Figure 9 Warfare System Reconfigurabiliz Center who
flexibility is the __contributed to the
ability to provide mission enabling functional EASE concept. especially Dr. John Short, Mr.
emphasis in those areas demanded by specific William Coggins, Mr. Hal Watt, and Dr. Jose
deployment assignments. Core Mufloz.
requirements for ship's safety and self-protect require
the applications in the left pie chart of figure 9.
Shifting to an Indication and Warning (I&W) mission REB ES
invokes specific requirements which could differ
significant for example, from a traditional Cold War 1 NRAC 91-1 Office of ASN RD&A, 1991
anti-submari•e warfare (ASW) mission. Summer Study on Qnen Systems Architecture for

The approach warfare system implementation Comnd. Control and Communic s
provides the ultimate flexibility; the ability September 1991.
customize, through reconfiguration, the total available 2 Director of Defense Research and Engi ing.
processing resources as mandated by its mission. Defense Science and TeAMly &w= July

1992.
SUMMARY 3 Office of Science and Technology Policy. Grand

C'hallenges: Efigh Performance Cjmui•ad

The Naval Undersea Warfare Center has undertaken Cm nicjion, A Report by the Committee
the EASE initiative to foster the application of fast on Physical, Mathematical, and Engineering
paced, emerging commercial technology to the Sciences to Supplement the President's Fiscal
development and acquisition of affordable warfare Year 1992 Budget, 1992.
systems. The initiative consists of new products and 4 Milton D. Rosenau, "Speeding Your Product to
processes to foster the transition of new technologies Market, Engineering Manae Review.
into the fleet. September 1989. pp. 27-40.

New processes center on the creation of a 5 1989, pp. 27-40.
Technology Insertion Environment which will Depament of the NAVY, ML2.2ftZ6.
provide the tools to make technology transitions 6 Steven C. Wheelwright and Kim B. Clark,
practicable. The environment will address concerns "Creating Project Plans to Focus Product
including: logistics, concurrent engineering, rapid Development," Harvard Business Review, March-
prototyping, requirements traceability, and April 1992, p. 74.
simulation. 7 Department of the Navy, RDT&EAuisition

To showcase the process, the EASE concept Manament Guide. January 1987, p. 2-8.
includes the development of two products using High Thomas C. Choinski, "Economical Development
Performance Computing and Communications
technology. The Wide Aperture Array and the Non- of Complex Computer Systems," Co~1ci
Penetrating Periscope provide the applications for Systems Engineering SyXthesis and Assessment
HPCC technology. These applications individually Technolog, vYforkho ocedin=s, July 1992.
require more than 10 GFLOPS sustained processing 9 Fumio Kodama, "Technology Fusion and the
throughput and together demonstrate the suitability of New R&D," Harvard Business Review, July-
HPCC technology for a broad range of DoD real-time August 1992, p. 70.
processing functions like image processing, 10 Department of the Navy, ... romth Sa,
beamforming, database management and traditional September 1992.
signal processing. 11 Department of the Navy,

Powered Submarines, Washington, D.C., 1992.

48

AN OVERVIEW OF THE PROCESING GRAPH non-deernmlistic responses to operator input. including the
SUPPORT additin or deletion of sensor camnels.

ENVIRONMENT
The POM specification [2] delines, de grammar and syntax

Roger Hills for Signal Processing Graph Notation (SPGN). an
NaoW Research Laboratory inte diate laguage for specifying processing graphs in a
Washitoa, DC 20375-500 text format FPM also dfines the ne. ssu7 functionality

for command prgrin prooedares which ae Implenented a
Abac extensions to a host-specific hi-order language. Other

parallel languages can als be appie to signal processing
The Navy has developed a data flow method for programming [e. 78, 9], but POM retains a amber of tique advuaagec
networks Of processors. This approach, called the Prmessing
Graph Method (POK), is now being used to devel signal (1) PCM includes a matum and stable imnenediiate
processing applications for the Navy's second-generation language for data-flow graphs.

l signal processor. At the Naval Research Laboratory, (2) PGM functionally specifies control procedum
a unified set of software tools has been developed to facilita which cam be embedded in a high-orde language
PGM programming. A Macintosh-based Graphic Entry appropriate for the host processor.
Workstation (GEWS) can be used to iconically capture (3) Panrlelia is implicit in the POM descriton of a
processing graphs which ae then automatically tranlated data-flow graph. The programmer does •n bave to
into Signal Processing Gr3ph Notation (SPGN). The explicitly indicate parallelism through the use of
Processing Graph Support Enviruonent (POSE) is a set of semaphor constructs, etc.
Ada sofwm utilities for compinS, linking, and executin (4) POM is arclitecor independet.
the processing graphs; it includes a large, ur le (5) PGM is the only dam flow method to be fully
library of signal processing primitives. POSE is now implemented on a tactical military signal processor,
available for VAX systems running VMS and for Sun-4 the AN/UYS-2A [10].
workstations under SUN OS 4.1.3. A simple signal
pi application is developed to demonstraft the utility The Processing Graph Support Environment (PGSE) is a
of POSE, and current enhancements to the system are complet implementation of PM [i]. The run-time shell
discussed. GEWS and PGSE are both available from the includes a large usr-extensible library of over 125 signal
Naval Research Laboratory. processing primitives. POSE is designed is to facilita the

multi-user development and testing of processing graphs. It
1. Introduction requires as input a set of SPGN files, data files, and either a

command program or a sequence of interactive control
Many commercial products now support iconic data-flow instructions. With the exception of an optional shell for
methods for propmnming signal procesWng applications [1]. executing AN/UYS-2A command programs, POSE does not
Over the past decade, the Navy has also developed a data-flow incorporate any madine-specific architectme models
method for programming multipmcessors. Tis approach is
called the Procesusig Graph Method or PGM [2, 3,4.5 , 6], 2. The Processing Graph Method
and is designed to reduce the cost and complexity of signal
processing application development. In PGM, signal A complete description of the Processing Graph Method is
processing applications are developed as directed data-flow beyond the scope of this article. Additional informion can
graphs (or processing graphs) and command progrnmi The be found in the PCM Specification [2] and Tutorial [3]. The
numerical computations are realized by elementary signal Pictorial Pocessing Graph Standard [5] describes the konic
processing functions underlying the processing graph nos conventions for POM graphs.
while the command programs provide a mechanism for
dynamically managing graph execution, including graph 2.1 Processing Graph Entities. A processing graph is a
initiation, termination, and reconfiguraion. Graphs are directed graph in which the vertices correspond to either
deterministic while command programs mediate inherently nodes or subgraphs, and the directed edges correspond to

queues. Subgraphs are themselves processing graphs.

49

Queues, which convey data between the nodes, are p intoahigh-ordertluguage(HOL)specif tothe
strongly-typed first-In first-out (M) data structures. The target machine. Command progrm functions permit the use
head of the queue is designated by an arrow, which also to start and stop the graph. to enter operator specified
specifies the directim of data flow through the queue. Data psanters, to link and unlink queues and graph values, and
ae plaed on ft tail of the qume, and removed from its head. to flush the data from a dynamic queue prior to restating the
A queue con be commected to only om node at its bead and only graph. The following list summarizas the major command
one node at Its taiL A dynamic queue is a queue reated mad Program functions:
controlled by a commmd program A graph variable (GV)
contain a single data element, although this element may 0 Declare the initial CP or a spawned CP mad
itself be a multidimensional array. A GV can be its formal parameers.
simultaoly atacied to one or mome nodes, and is used to Spwn one or mm instances of command
broadcast dat throughout the graph. Its value can be program s from the initial CP or one of its children.
modified at rntime by the output from a node or a command • Start or stop a graph.
proZM. Completely reinitaaze a graph instance, ad

resume its execution.
Nodes are the scheduled entities within a processing graph. Cree and destroy dynamic queues and graph
Each node must have at least ome Inp pout, although it is not variables.
required to have an output port. Queues and graph variables 0 Initialize a dynamic queue and add data to it, read
are attached to the node's ports, and must be of the same data data from it, or flush the data entirely.
mode (type) as the port. Each node has an underlying 0 Read and write to dynamic queues and graph
elementary computational process called a primitive, variables.
Examples of signal processing primitives are Fast Fourier Connect or disconnect a CP to the head
"Transforms (FPrs), filter and bandshift functions, and or tail of a dynamic queue, or link or unlink a
elementary vector and matrix operators. Data will be passed dynamic queue from the port of a graph or I/0
to and hum the primitive during node execution. procedure.

Wait for the completion of a procedure to read a
Associated with each node port is set of Node Execution que.
Parameters 04EPs). These parameters determine how the Initialize 1/0 procedures, associate them and
data on the queues are to be used. There ae five NEs for with dynamic queues, and start and stop the I/0
input queues: threshold amount, read amount, consume pRocesses.
amount, offset amount, and valves. When die number of data
elements placed on each of a node's input queues is greater 3. The Processing Graph Support Environment (PGSE)
than or equal to the threshold amount for each queue, the node
is ready to execute. The read amount specifies the number of The Processing Graph Support Environment is set of Ada
elements that are read by the node before the underlying programs for compiling, linking, and executing processing
primitive executes; off.ret amount is the number of elements graphs and command programs. PGSE was written and
which are skipped before reading the data. The consume developed with the Digital Equipment Corporation Ada
amount specifies the number of data elements which are Compilation System (DEC ACS), and has been ported to the
removed from an input after the node executes. A valve has SUN-4 under the Telesoft TeleGen2 compiler. PGSE
some integer value; If this value is zero, no data is placed on Incorporates a compiler, linker, and nm-time shell (Fig. I).
the qouee.

The PGSE compiler performs extensive syntactical enro
2.2 Commandprogrnms. Unfl processing graphs, command checking on the source files, as well as verifying the
programs are implementation-dependent on the PGM host. conformance of the primitive arguments with a library of
Chapter 5 of the PMM specification specifies the Command primitive profiles. The linker accepts the object modules
Program (CP) functionality required for a PGM produced by the compiler, and produces a single graph
Implementation [2]. A syntax is suggested, but It is not realization load module. Extensive checks are performed to
mandatory. CP procedures alone are not sufficient to write verify that the interfaces between graphs and subgrpM are
command programs, for these procedures must be consistently defined.

50

I

The trace Jimauon is identical to the breakpoint function;
.1 PGSE Rx-7me SheL The run-time shelpermits however, it only notifies the user when a given condition has

the user to debug and execute the graph realization module been met, rather than halting graph execution. Watclpoirds
cretad during the link stp. The executing graph can read dma can be set to suspend graph execution whenever a particular
from ASCU-formatted data files, process the data, and NEP is modified outside of a specified data range. The
produce formatted output files. The PGSE run-tme shell watchpoint function is useful for analyzing graphs with
Includes an extensible library of signal processing primitives variable NEPs.
compliant with the ANJUYS-2 primitive specification.
PGSE Is distributed with the source code for all supported When the graph execution is suspended, different entities
primitives, and a set of Ada packages to assist the user in within the graph can be examined. The user can display the
deelo&Sgnewprimitives [11, part2, chapter7. status of the node, and the status of each of its input and

ouput queues. All breakpoints can be listed. When a queue is
During graph execution, the shell evaluates run-time examined, the data it contains can be read to a file, listed on
expressions and continually checks the interrelationship of the screen, or plotted to the screen. All formal parameters

The e constraints include the requirements that all associated with nodes, queues, and graph variables can be
NEPs except valves are greater than or equal to zero; and that displayed.
threshold amounts are greater than or equal to both the
consume amount, and the sum of the read and offset amounts. Log and history files capture the history of the graph
Primitive specific constraints are likewise checked for data execution. The log file records the sequence of interactive
compliance. Warnings will also be issued if any graph system commands processed by the shell, and ft history file saves
or pnimitive-specific constraint is violated, the sequence of node executions, including the path to the

node and the underlying primitive.
3.2 Sh7U Comm &d. Commands to the shell can be entered
either interactively, or by writing a formal Ada command 4. A Signal Processing Example
program. The original Ada command program environment
was developed in 1988; more recently, a shell has been Fig. 2 illustrates an elementary four-node processing graph
Implemented which will process Ada programs written in which performs filtering, spectral analysis, integration, and
accordance with the AN/UYS-2A command program complex magnitude estimation. This representation was
environment. Many of the interactive commands emulate generated with the GEWS workstation. The nodes are
command program functions, Commands are defined to cate shadowed, and the queues ame in boldface: this convention, in
and destroy dynamic queues or graph variables; to link and compliance with the processing graph pictorial standard [5],
umlink the queues or graph variables from a graph; to deposit, indicates tha each of these queue and node entities represents
examine, and remove data from either dynamic and local afamily of graph instances. That is, there will be NC copies
queues or graph variables; and to start and stop 1/0 processes. of the graph executing in parallel, each on a separate sensorI graph itself can be started and halted, and the scheduling channel
of nodes suspended and resumed.

In the case of the queues, the family structure is made explicit
An executing graph can be halted by suspending node by the bracketed indices which precede the queue names
scheduling, by stopping graph I/O, or by setting a breakpoint ([1.NC]QJN, [l..NC]Q1, etc.). The ith node or queue in a
for a node of primitive. The use of breakpoints provides a family will be designated as [I]ENTITY.NAME. The
major tool for symbolic debugging of the graph. Breakpoints syntax for the SPGN specifications is also straightforward.
can be set to execute after some specified number of node or A familly of NC queues of mode float can be spcfr as

primitive executions, and prior to the next execution of the

entity. A breakpoint will be either temporary or permanent; %QUEUE ([1..NC]Q.INFFT : FLOAT)
if permanent, it must be explicitly canceled or the scheduler

will stop on every subsequent occurrence of the specified A node which calls the primitive real-to-complex FFT can be
condition. A graph can also be executed one node at a time. declared as

%NODE ([I=1..NC]FFT

51

PRIMIIVE= FIFT.. RC application development are the Sun-based gred/gril
PRIMN -NJN utilities, developed by AT&T Bell Laboratories [14]. Grad is

NKou, the Ironic cpture system, d Van l transaw the gred outpM
MAG, files into SPGN.

IDQJN."T PGSE, like GEWS, has been widely distributed, both to
TH1RESHOLD=N industrial users and to Navy laboratories [131. Aside from
CO?4SUMEuN*(1.434) the AN/UYS-2, the VAX- and SUN-based POSE system

PRiM.OUT - [IJQOUTFFYT cuTmeny provides the only available messi for developing
PGM applications and primitives. New primitives can be

where NJN, NOUT, FLAG, and BIN.NUMBER ae the inexpensively proIotyped and tested in Ada. PGSE is of
number of points per transform, the number of Output points particular value to teams of software developers with
per transform, the dremon flag, and the starting bin number, limited access to the AN/UYS-2, which is effectively a single
respectively. [I]QJNFr and [I]QOUTYFT ar the user mmachin, although the speed of PGSE graph execution is
ith members of a family of input queues and output queues, generally insufficient for real-time applications. PGSE is
respectively. The SPON for the example was generated on the now being used by Hughes Aircraft to prototype applications
Macintosh Graphic Entry Workstation (GEWS) [12], but it for the Active Low-Frequency Sonar (ALFS). It has been
can also be wdtten by hand. employed at NRL and NAWC to prototype passive sonar

applicationL
The application ca be started and managed either by a
sequence of interactive commands, or by an Ada command NRL is currently testing a new release of PGSE which
prgram. In either case, the command sequence must be incorporates an ANIUYS-2A Ada command program shell

[15]. A new interface will permit users to execute subgraphs
define the formal graph variables and/or queues as single nodes; this pernits the user to simulate compound
connected to the graph. primitives ('chains-) constructed from subgraphs with nodes
define the I/O processes for the formal queues using existing primitives. New tools to simplify the coding
and associate the I/O processes with the input of Ada primitives have been proposed.
and output dam files.

* start all I/O processes except for one input process. Tlme development of POSE has been driven by the Navy's need
* start the graph via the START command. for rapid prototyping of AN/UYS-2 applications. Because
* start the remaining input process. the POSE implementation is independent of any specific

target machine, the system has wide utility. The domain of
Figure 3 shows the transformed data on the input, output, and applications is a function only of the primitive libraries.
internal queues of the graph. The data was captured by setting Although the current primitive library is based upon the
breakpoints on the appropriate nodes and plotting the queue ANO/YS-2 primitive specification [16], primitives for C31
data to the screen. The input to the graph was simulated applications and Bayesian inference networks have also been
time-series data generated by summing a degraded sinusoidal written.
signal and three of its harmonics. A practical difficty is
that PGSE cannot examine data on the formal queues. The REFERENCES
original graph was therefore augmented by replacing the
input and output ports by a family of concatenated nodes and [1] R. Robison, "Tools for embedding DSP," IEEE
replicated nodes respectively. S)ectNu voL 29, no. 11, 1992, pp. 81-84.

&.The States and Future of PGSE [2] Processing Graph Method Specification: Version
1.0, rrepared by the Naval Research Laboratory for

GEWS, available from the Naval Research Laboratory [13], use by the Navy Standard Signal Processing Program
has been widely distributed, although it is no longer being Office (PMS-412), Dec. 1987.
maintained against the current PGM specification. The
Navy-sanctioned workstation tools for ANfUYS-2 [3] Processing Graph Method Tutorial., prepared by the

52

Naval Research Laboratory for use by the Navy [12] Graph Entry Work Station (GEWS) User's Guide
Standard Signal Processing Program Office (Beta Test Version 0.98), prepared by Hughes
(PMS-412). Jan. 1990. Aircraft Company Ground Systems Group for the

Naval Reserch Labcvatory, Dac. 1989.
14 , R. Stevems. A Tutorial on the Processing GmI3i

Method, -Proceedings of the 1987 Summer [131 The GEWS software and documentation is
Computer Simulation Conference (Montreal, distributed for free by the Naval
Quebee. Canada, July 27-30). The Society for Ra . The PGSE tools am available
Cnp oe Simulation, .A,.ego, CA 92117. for a nominal distribution fee A written request,

accommaied by a blank Macintosh disk should be
[15 Pictorial Processing Graph Standar4 prepared by submitted to:

the Naval Research Laboratory and Evaluation
Corporation International for use by the Navy Roger Hilson or Judy Treack
Standard Signal Processing Program Office Code 5583
(PMS-412), March 1988. Naval Research Laboratory

Washington, D.C. 20375-5000
[6] Information concerning POM documentation and (Tclphoe: 202404-7332/7334)

taining coumses should be directed
to: [14] ECOS Workstation User Manual., prepared for

Naval Sea Systems Command (PMS-412) by AT&T
Naval Sea System Command Bell Laboratories, March 1989.
Room 1E28,
Attention: Mr. Clair Guthrie [15] AN/UYS-2A(V) ASIP Application Programmer's
Arlington, VA 22202 Reference Manual, prepared for Naval Sea Systems
(Telephone: 202-602-0284) Command (PMS412) by AT&T Bell Laboratories,

March 1993.
17] OCCAM 2 Reference Manual, INMOS Limited,

1988. [16] ECOS Primitives Specification Library (Floating
Point: SEM B), prepared for Naval Sea Systems

[8] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, Command (PMS.412) by AT&T Bell Laboratories,
"The Synchronous Data Flow Programming September1988.
Language LUSTRE," Proceedings of the IEEF, voL
79, no. 9,1991, pp.1305-1320. Acknowledgments: The major sponsor for PGSE

development was the DOD Software Initiative Software
[9] P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Technology for Adaptable Reliable Systems (STARS), with

Make, "Programming Real-Time Applications with additional funding from the Naval Sea Systems Command
SIGNAL," Proceedings of the IEEE, vol. 79, no.9, (PMS-412 / PMO-4128) and the Naval Air Systems
1991, pp. 1321-1336. Command (PMA-264). Richard Stevens, David Kaplan, and

Judy Trenck have facilitated many aspects of the work
110] G. Melcher, G.Thmmas, and D. Kaplan, "The Navy's described here. Particular thanks is due to Bradley Logan of

New Standard Digital Signal Processor, the the Hughes Aircraft Company Ground Systems Group,
ANAUYS-2," The Journal of VLSI Signal Processing, technical director for PGSE development.
voL Z no. 2, 1990, pp. 103-109.

[11] User's Manuals for the Processing Graph Support
Environment: Parts 1-4, prepared by Hughes
Aircraft Company Ground Systems Group for the
Naval Research Laboratory, Dec. 1989.

53

Interactive Scrit fies or
Ada Cenmmad program

GrmpWi GnOp
a ifor -

SPGN
souc RELO
Gaurantor rp

UAW

I()NCOMGraph Caplure:eluer pecn

GEWS (Madabuwb) ow
GRED/GRAIL (Sup) PS rp

(1.NqQJN

PGSE Stud -rcc
FLWRPibitive Lbray sand
RR-RISOptloni User-Dewdloped

lim.NqoI
P rIIUlfvaA

VAX or SUN-baud PGSE Tools

FFrTRC Fig. 1. The Processing Graph Support Environment

I1.NqCR

DE~a
DOMGCS

Fig. 2. A Four-Node Graph

54

Momnw -.

Fi.3& Smoot M me-Series Data ([2JQ1* Fg. .U Jntgrat Spectral M agntude ([2JQ3) UT

a.ýLMa.

Aig 3c. Complex Spectra Data ([2]Q2)

55

A Real-Time Object Model:
A Step toward an Integrated Methodology

for Engineering Complex Dependable Systems

K. H. (Kane) Kim and L. F. Bacellar
Dept. of Electrical & Computer Engineering.

Univ. of California
Irvine, CA 92717, U.S.A.

Abstract of temporal behavior requirements and
dependability requirements. As a result, the

The need to establish a coherently integrated requirements-design traceability has been
methodology for engineering ccrnplex real-time generally weak.
computer systems has been taken seriously in (2) Weak traceability among various system
recent years by both researchers and practitioners (2deam r
dealing with safety-critical computer-based models:
applications. In our view, a missing cornerstone The traceability among various system
for developing such an engineering methodology models used during high-level design, validation,
is a system (and component) model which is and evaluation has been generally weak. The
effective not only for abstraction and stepwise consequence has been the poor interoperability
refinement of complex real-time computer and coherence among various tools mobilized
systems but also for representing and providing a during system development and evaluation.
basis for analysis of the application environ- (3) Lack of integration in design techniques:
ments. Only with the establishment of such a Most real-time fault tolerance techniques
modeling scheme can one hope to realize a stand unnecessarily in isolation while in fact
method for requirements analysis and specifica- many of them are complementary in nature.
tion which will produce a solid information base Cost-effective integration of such techniques
for both systematic design and rigorous evalua- remains unachieved. Also, approaches have not
tion. The first author and his research collabora- been sufficiently developed for optimizing
tor, Hermann Kopetz, jointly formulated an initial allocation of resources which would realize
framework of such a desirable system model a efficient implementation of real-time distributed
few years ago. It was named the real-time object computer systems (DCS's). Naturally, integration
(RT-object) model. The RT-object model, an of effective resource allocation approaches with
extension of the conventional object model, fault tolerance techniques has been delayed. .
possesses capabilities for precise handling of the In our view, the key issue to be resolved is
timing behavior of modeled subjects. A basic the uniformity and achievable accuracy in
thesis we have attempted to validate is that any representation of both application environments
application environment, not only control and designs at different levels evolving during the
computer systems, can be modeled as a set of and des e rent levels e dureinteactng R-obects Th potntil oftheRT- system development cycle. That is, a desired
interacting RT-objects. The potential of the RT- representation (or modeling) scheme should beeffective not only in the abstraction of real-timemethodology for engineering complex (computer) control systems under design but also
dependable systems is discussed. in the representation of the application

environments. Such a modeling scheme should
1. Introduction allow variable-accuracy representations ranging

from a full-detail functional specification to a
Techniques for engineering complex high-level structural representation. In particular,

dependable real-time systems (DRS's) have be. -, it should be capable of handling temporal
a subject of intensive research for more than two characteristics at various degrees of accuracy.
decades but by and large they have evolved in Only with the establishment of such a modeling
insufficiently integrated forms up to now. As a scheme can one hope to realize a method for
consequence, we perceive that the following requirements analysis and specification which
conditions in the current practice in system will produce a solid information base for both
engineering exist : systematic design and rigorous evaluation.
(1) Lack of rigor in requirements specification: The first author and his research

Particularly problematic is the specification collaborator, Hermann Kopetz, jointly formulated

56

an initial framework of such a desirable modeling computer systems [Kim80] into the approaches
scheme in [Kop90a, Kop90b]. It was named the applicable to DCS's, the following questions were
i1 (RT-ob.1ect) model. The RT- encountered:
obNect model, an extension of the conventional How is the urgency of a task to be
object model, possesses capabilities for precise determined ?
handling of the timing behavior of modeled
subjects. Although the term "real-time object" What is the relationship between stimulus-
has appeared in literature quite a few times and tasks d
there is some common ground with what was How are the concurrency and contention for
referred to as a real-time object in previous processing, storage, and communication

literature [Bih89, Rum9l], the real-time object roces toref in dtminin

model discussed in this paper possesses some an optimal allocation ?

concrete unique characteristics. In order to How are dynamic system reconfiguration

distinguish the real-time object model discussed actionst e ac commod atiou

here and in [Kop90a, Kop90b] from others, it is endangering the output timeliness?
often denoted by RTO-k.enagrnthouptimles?

oftenidenothed byme s R o tIt appeared that the approaches formulated for

Besides the timeliness of the outpui an single-node systems were too simplistic to be of
attribute that is of particular importance in, use as a baseline for deriving approaches
complex real-time systems is dwnenailitv which applicable to sizable real-time DCSs.
encompasses reliability, availability, and security
[Lap92]. The current practice in handling Thirdly, in searching for approaches for the
dependability during the system engineering rigorous specification of timing requirements, the
cycle lacks a coherent systematic process. The following questions were encountered:
need for establishing an integrated methodology Would it be sufficient to associate timing
is especially acute in this area. Again, we argue specifications with procedure-segments
in this paper that the RTO.k model is a promising and messages crossing node boundaries ?
framework for building up such a methodology. How are fault tolerance actions to be accommo-

Therefore, the main theses put forth in this dated in timing specifications ?
paper are : Our conclusion was that all the above questions
(1) The RTO.k object model has strong pointed to one basic law: rigorous handling of
uniformity and unbound achievable accuracy in the temporal behavior of a DCS requires a global
representing both application environments and view of the system and a top-down engineering.
computer control systems under design, and Consequently, a model of a system or its
"(2) The RTO.k object model is a promising component: that facilitates a global view and

backbone of a coherently integrated system stepwise refinement of the view was recognized
development methodology, in particular, a as the key item needed in resolving the questions
framework in which various complementary raised above. So, a search began and at the outset
dependability assurance techniques can be the object model appeared to be a natural
integrated, building-block for any modular-structure system

[Dah72, Boo91, Rum91]. However, conventional
2. TheRT-object model object models did not appear to have sufficient

concrete mechanisms that provide power for
2.1 Motivation accurate modeling of application environments.SIn our previous study dealing with the 2.2 The essence of the RT-object model,
subject of DRS's, the need for a model such as the RTO.k
RTO.k object model was encountered in several The RT-object model formulated by Kopetz
different contexts. First, during the attempts to and Kim in [Kop90a, Kop90b], often denoted by
validate rigorously the effectiveness of certain RTO.k, is an extension of the conventional object
real-time fault tolerance mechanisms in the
context of real-time DCS's, questions such as the (1) inndent of the language (textual or
following were encountered: graphic) used to program or specify object

How are time-out values to be chosen ? designs,
How are the recovery time requirements to (2) independent of the way inheritance is

be determined ? facilitated, and

Secondly, in trying to extend the approaches (3) independent of the service-call mechanisms
formulated for scheduling hard-real-time tasks in or the message protocols by which objects
single-node (including multiprocessor based)

57

exchange information on services requested and
completed. ,dG

It is a stepwise refinable structure with
abstract data type characteristics. It is an 0 M., O,
extension of the conventional object model(s) in
at least three essential ways: _.L RTo0
(1) For each execution of a method of an RTO.k - -
object, a deadline is imposed; X
(2) For some methods of an RTO.k object a rer!-
time clock serves as the mechanism for triggering
the method executions as a function of real time A A

and such methods are called time-triggered (TT-) S* Sprawow

methods; and
(3) Real-time data contained in an RTO.k object 0 • I
become invalid after the interval called the X MOW

maximum validity duration passes.
In addition, the following constraint on method X/et •
executions is incorporated into the RTO.k model. SVK
(4) A basic concurrency constraint which
prevents conflicts between TT-methods and C
message-triggered methods is incorporated. In]
general, activations of object methods triggered
by messages from external clients are allowed E comn'rf added to a ftx len objet
only when TT-method executions are not in I - ahe for of each o'meftd
place. To be exact, when a message-triggered 2- dockdvený ocM of obJecr meft•
method is not free of data conflict with a TT- 3. Mmw vakft dimron fe "asto i " ftre
method, execution of the former (message-
triggered) method must not be allowed in a time Figure 1. RTO.k - A real-time object model
zone separated by less than a certain system-
dependent constant, say g, from a fT-execution it contains deadlines, TT-methods, maximum
of the latter method. This restriction is called the validity duration, and the basic concurrency
basic concurrency constraint or state accessiby constraint. The unique characteristics of the
constrainti. Note that this basic constraint does RTO.k object model together with its relatively
not impose any restriction on concurrent recent formulation are also indications that the
execution of TT-methods or concurrent execution model as it currently stands is more of a
of message-triggered methods. framework of an evolving model, not a fully

Figure 1 depicts the essential components of developed mature tool.
the RTO.k object model. The extension (1), The proposition that an object model can be
namely the deadline imposed on a method used to represent not only computer systems but
execution, has been mentioned in every also application environments is not new
discussion of the term real-time object. In [Dah72]. This is originated from the belief that
addition, the notion of calling for an object each real-time application environment can be
method as real-time reaches some predetermined viewed as a set of state variables that interact
time-points was mentioned in some of the among themselves. However, unlike other object
literature in which the term real-time object was models the TT-method facility in the RTO.k
used, although the approach of clearly object model enables representation of the
distinguishing between TT-methods and message- application environments "to any degree of
triggered methods adopted in the extension (2) is accuracy desired" within the limit of the user's
probably a unique feature of the RTO.k model, knowledge about the environment. That is, the
The extension (3) (use of the maximum validity clock-driven activation of object methods is a
duration to eliminate old useless data) and the natural mechanism for representing the
extension (4) (basic concurrency constrainty are concurrent and continuous changing of the state
unique features of the RTO.k model. Therefore, variables which are typical situations in the
on one hand, the RTO.k object model is general application environments. This will be illustrated
in that it is independent of the specification / in the next section. Additional mechanisms for
design language, the inheritance mechanism, and specifying certain parallelism existing among the
the inter-object message protocols used. On the methods of RTO.k objects, e.g., mechanisms of
other hand, it has a new concrete structure in that COBEGIN or FORK-JOIN nature, are also

58

allowed in the RTO.k object model as in many
conventional object models.

The basic concurrency constraint is not only
necessary for keeping the semantics of the RTO.k
model in an unambiguous form but also can be
useful in ensuring consistency among RT-objects.
The latter point is particularly acute when RT-
objects are replicated while updating the object
data store in each object is the exclusive
responsibility of TT-methods. It is easy to design ...
such object replicas with the assurance that they I
will never provide different values with the same
time-stamp to their clients [Kop90b].

A fundamental notion established in COMPUTER
association with the RTO.k object model is that
of temporal accuracy which refers to the time gap
between a state variable in the application Figure 2. An anti-missile defense system
environment and its representation in a computer-
internal RT-object [Kop90a, Kop90b]. This
temporal accuracy is a notion fundamentally Initially the top-level requirements given by
related to the output timeliness. Therefore, we the customer who places an order for the defense
believe that much of the temporal behavior system are as follows.
requirements imposed on control computer (1) Each RV should be intercepted if it is
systems can be specified in natural and rigorous dangerous.
forms in terms of temporal accuracy bounds. (2) If there are more dangerous RV's than
Temporal accuracy bounds are then major drivers the interceptors, then the early arriving RV's
for determining many other temporal entities such should be intercepted and the defense target
as deadlines for object method executions. should be moved toward a safer location.

The system designer will first decide on the set of
3. An RT-object based approach to sensors and the set of actuators (e.g., interceptors)

environment modeling and to be deployed. Thereafter, the functions of the
requirements specification computer based control system will be

determined based on the control theory logic
The object model was initially formulated adopted.

and used in simulation applications [Dah72]. If some sensors and actuators chosen are
Therefore, use of the object model in modeling located in the theater, then a representation of the
the environment objects, i.e., modular entities in application environment must be expanded to
the environment which have time-varying internal include these newly chosen environment objects.
states, has been practiced for a long time. An RTO.k representation of the initial theater
However, as mentioned in the preceding section, (before deciding on the sensors and actuators to
the recently formulated version of the object be incorporated within the theater) is depicted in
model, the RTO.k object model, supports more Figu re 3.
accurate detailed modeling of environment Figure 3.
objects. This aspect and how the RTO.k object The internal storage of this high-level RT-
model can be used during the requirements object basically consists of the space in the
specification and high-level design steps are theater, a defense target (ship), and a dynamically
discussed in this section with examples derived varying number of RV's. Therefore, the
from the defense C- area. information kept in this RT-object is a

Consider an anti-missile defense scenario composition of the information kept in the
depicted in Figure 2. The environment in this defense target, the RV's, and any other object in
context means a sky space segment of interest, the theater space. A noteworthy propeity here is
called the "theater", and any moving objects in that each of these components that are treated as
that theater including a valuable target to be components of the internal storage, i.e., the
defended (e.g., a ship) and flying objects (e.g., defense target and the RV's themselves, can in
hostile reentry vehicles (RV's) and non- turn be represented as an RT-object.
threatening slow-moving objects).

59

The other class of methods are the message-
state Space . triggered methods that are found in conventional

- Internal storage in turn, objects. They are labeled service methods in
"* (0 - n) RVs RTO's Figure 3. They are invoked upon requests from
" Defense target 0 Max valid. the clients. However, the clients here are unusual

ones, i.e., sensors and actuators interfacing withe
" Theater space duration E 0 environment objects. Figure 3 corresponds to the

Access rights for external objects case where some sensors to be located outside the
* None _ theater have been chosen but no sensors and

actuators to be located inside the theater have yet
Methods been chosen. Sensors work to obtain information
- Spontaneous: (driven by an infinite-precision clodc) about the states of environment objects, primarily

locations, movement directions, and some
[RV position & acceleration 0 signatures of RV's and the defense target. This

Target position & acceleration invocation relationship between sensors and environment
- Service: objects can be represented partially by the service

methods such as "Read-location (environment
* Read-location (RVs & target) S Instant object)" in Figure 3, with the understanding that

service for sensors service such a method is executed at the instant at which
o Set-direction & accern (target) a sensor makes an observation of the environment

state.
C oitonditions " eoiy&aclrto fec V Similarly, actuators work to make impact on

"• Velocit & acceleration of dfnetachgRV: - the conditions and future courses of environment
* Velocity & acceleration of defense target: - objects. In this example, the only possible impact

* Read-location target) may return a constant value that can be made on RV's by the system being
0 3 parallelism among service methods, designed is the collision of the interceptors
_____parallelism __mongservi ___methods,_ against the hostile RV's. These interceptors are

actuators produced at an early stage of the system
Figure 3. An RTO.k specification of the design and once they are produced, they should

environment be treated as environment objects in the theater as
well. Although Figure 3 represents the theater

The methods in this top-level RT-object before introduction of such actuators, there are
model for the theater are classified into two types. some control points in the defense target which
One class of methods are the TT-methods and can be accessed from the computer system,
they are labeled spontaneous methods in Figure 3. typically structured as a control computer
Conceptually these methods are activated network (CCN), via a communication channel,
continuously and each of their executions is e.g., a radio communication device. The "Set-
completed instantly. If we adopt the less precise direction & acceleration (target)" service method
version of the model in which the time domain is in Figure 3 represents such possibility.
a discrete domain and the time gap between two The last important component of an object
instants adjacent-in the domain is called a clock model is the set of constraints that governs both
tick, then a less accurate representation of the information states of the object and the
environment results. That is, such view dictates computational results produced by object
the activation frequency of any spontaneous methods. In Figure 3, these constraints are listed
method to be no more than once per every clock in the section labeled Conditions. All the
tick while allowing each execution to be constraints listed are of the "laws of physics"
completed before or by the time of the following type. Therefore, the system designer's knowledge
activation of the same method. Therefore, the of physics is expressed in the Conditions section.
spontaneous methods are the mechanisms for One of the constraints in Figure 3 specifies the
representing (or simulating) continuous state parallelism that exists among service methods,
changes that occur naturally in the environment i.e., the parallelism among the sensor activities
objects. The natural parallelism that exists and actuator activities. This is an example of a
among the environment objects is precisely concurrency constraint. Concurrency constraints
represented by use of multiple TT-methods which are integral components of RT-objects.
may be activated simultaneously. In general, the
accuracy of an RT-object representation of the As mentioned earlier, a single RT-object
environment is a direct function of the activation specification of the environment can be refined
frequencies of TT-methods. into a network of RT-object specifications, each

corresponding to a different environment object.

60

All the knowledge contained in the Conditions rather than being present temporarily, from the
section of the single RT-object specification requirements specification step through the
should be retained, most likely in a scattered structured design step to the validation and
form, in the network of environment object evaluation step.
specifications. Additional knowledge may also Figure 4 depicts the use of the RT-object
be introduced during the refinement process. model during the early steps in the system

development cycle. Some time after an RT-
Note:. The defense C3 scenario discussed object based specification of the environment is
above was chosen because it had been established obtained, an RT-object based specification of
in a LAN based distributed computer system sensors, actuators, and the control computer
testbed in the authors' laboratory several years network (CCN) can be obtained on the basis of
ago. It is a rich scenario for use as a test ground the control theory adopted. The Conditions
for various advanced approaches to dependable section of the RT-object representing the CCN
real-time computing. The existing implementa- must contain information on the requirements
tion is structured in the conventional object imposed by the system customer.
oriented style and not based on the RTO.k object For example, if a radar sensor and
structuring. A new implementation based on the interceptors as actuators are adopted, then the
RTO.k object structuring is under way. Conditions section of the RT-object specifying

the CCN must include the type of constraints
4. The RT-object model as a potential shown in Figure 5.

backbone of an integrated methodology All the specifications (of both the
for engineering complex DRS's environment and the CCN) may go through

further refinement which is essentially a high-
There are many important implications of level design activity. As the environment

the RT-object based unified representation of specification is refined, more knowledge of
both control computer systems and the physics may be incorporated. Similarly, as the
applications environments. The RT-object model CCN specification is refined, more control theory
is a potential basic structure that can evolve, knowledge may be incorporated.

So far, the discussion has been focused
Conrol System ENV°T mostly on the role '*.at the RT-object model can

play in the requirements specification and high-
level design steps which are the earliest steps inthe system engineering cycle. Under the RT-
object based engineering methodology envisioned
here, detailed design means essentially a process
of converting the high-level RT-object

&. specifications into more detailed or even fully
OctuWOM PiiJ lo executable RT-object specifications.# 1 > I4 • IA number of significant benefits are

expected to accrue from such a practice. A few
major ones are listed below. However, concrete
demonstrations of these benefits are yet to be
seen and thus the following should be treated as

m potential benefits.
, .. (1) Requirements specification:

Cond.d Con. Requirements, in particular temporal
behavior requirements and dependability
requirements, can be specified in rigorous forms

A c that can be detailed to varying degrees. As
CWond Cond mentioned before, these requirements are

expressed in the Conditions section of the RT-
object specifications. Uniformity and unbound
achievable accuracy in representing both the

WW on Phes environment and the CCN are the fundamental
Figure 4. High-level design ingredients enabling rigorous specification of
Fia aio orequirements. Also, better information flow from

via elaboration of RT-objects the requirements specification step to the

61

converting each high-level RT-object into a
S rto Spae network of software (or user) objects and

Internal Storage: Max validity hardware (or resource) objects.
"* Sensor Output file duration ?? (3) Rigorous validation:
"* Track file Validation of both temporal behavior and
"* Intercept plan oe dependability can be performed in a much more
"* Sensor schedule systematic and rigorous manner than before.
"* Target status This is again due to the improved rigor in
Access rights for external objects: requirements specification and the improved
* RTO for Theater (including sensors information flow during the system
and actuators) development cycle.

Mehods - (4) Compatibility among modeling and
evaluation tools:

- Spontaneous: Due to the improved information flow

"* Sensor data acquisition (option 1) from the requirements specification step to the

"C Processing I validation and evaluation step, the compatibility

"C Processing n r Deadline? among the tools mobilized during various steps
a Sensor comnd edliis expected to improve significantly.

" Actuator commands It should also be noted that an RT-object
based system engineering methodology can be

- Service: gainfully enhanced by incorporating additional
"C Start modeling and analysis techniques (e.g., process

"oriented models and data flow models [Rum9l,
C Stop You89]) as supplements to the RT-object
"C Move-target backbone during various steps of the system
"C Process-data-from-intelligent-sensor (option 2) engineering cycle.

Conditions: 5. Integration of dependability design
* Sensor data acquisition & sensor commands must techniques into an RT-object based
take place to track RVs.
* Once "sensor data acquisition" finds a radar return system engineering methodology
data timestamped at t. a sensor command must be Quite a few complementary techniques for
issued at t + A. designing highly fault-tolerant real-time DCS's
* An Intercept command must be issued before a have been developed over the years, but each
dangerous RV reaches the altitude of x. has matured to a different degree in isolation
* Target movement commands must be issued to without being integrated with others. Two most
make the defense target to attempt to avoid dangerous important basic classes of techniques are as
RVs even after the interceptors are exhausted. follows.

(1) Techniques for realizing action-level fault
Fieure 5. An RTO.k soecification of the CCN tolerance : I

structured design and optimization step can result These techniques aim for designing DCS's
due to the common RT-object structure that is such that critical actions take place (i.e., each
used in both steps. critical real-time task produces an output as
(2) Resource allocation: specified) in spite of component failures.

Top-down multi-level resource allocation Therefore, they aim for much higher degree of
can be facilitated in the course of stepwise dependability than those techniques aimed for
creation of object hierarchy designs after starting merely aborting some tasks and cleansing system
with RT-object based requirement specifications. states upon component failures. For tolerating
Such resource allocation approaches are expected hardware faults only, the most basic techniques
to offer significant advantages over the bottom-up formulated are:
approaches of extrapolating conventional Voting TMR (triple modular redundancy)
uniprocessor scheduling techniques to deal with (more generally, voting NMR) [Toy87],
DCS's. Obviously, resources can also be PSP (pair of self-checking processors) (of
represented at varying degrees of accuracy as RT- which a special case is the pair-of-
objects before their allocation. Resource comparing-pairs scheme used in the
allocation can then become a process of

62

Stratus system [Wil8S]) [Kim92], requirements can be incorporated. Initially, a
Temporary blackout handling [Kim92). dependability requirements specification will

For tolerating both hardware and software faults, appear in the Conditions sections of high-level
the most basic techniques are fRT-objects. The specification can then be

decomposed or refined as high-level RT-objects
DRB (distributed recovery block) (which are converted into networks of smaller RT-

uses the recovery block scheme as a objects. Uniformity of the representation
component) [Hec91, Kim89a, Kim92], structures maintained across the environment

NVP (N-version programming) [Avi85]. specification and the CCN specification and also
More "expensive" techniques devised to maintained during stepwise refinement, is a major
supplement the aforementioned basic techniques ingredient enabling the rigorous and coherentinclude the distributed conversation scheme and specification of dependability requirements andothers [Kims9b]. c the design of dependable computing capabilities.e Rigorous specification of dependability
(2) Techniques for DCS diagnosis and requirements in turn facilitates cost-effective
reconfiguration integration of various dependability design

These techniques aim for minimizing the techniques evolved in isolation.
periods during which sick organs are lurking in (2) Integration of action-level fault tolerance
DCS's. This means to facilitate fast learning by techniques and DCS diagnosis and
each fault-free node of faults occurrins in other reconfiguration techniques
parts of the DCS and fast reconfiguration Since these techniques require certain
including functional amputation of faulty allocation of hardware resources, a model thatcomponents, reincorporation of repaired or new alcto fhrwr eoreamdlta
components,d redistribution of tasks. can represent both functions to be performed andcomponents, anethe supporting execution resources can serve as aBasically the following three types of approaches highly valuable guiding structure. The RT-object
are conceivable: model is a highly desirable model in this regard

Centralized, although the use of the RT-object model for this
Decentralized, purpose has not been practiced widely. Active
Hybrid. research is under way in this integration area.

Centralized approaches are simple and have been (3) Integration of fault tolerance design
considered from the beginning days of distributed techniques with performance-guarantee
computing. Yet its integration with the oriented design techniques
techniques for action-level fault tolerance has not Performance-guarantee oriented design
been fully accomplished. Decentralized t
approaches are much less mature as a technology techniques include both system structuring
although again the basic concept is at least 20 techniques and resource allocation techniques

year ol. Hbri aproaces an e dvelped aimed for guaranteed response time. As
years old. Hybrid approaches can be developed mentioned in the introduction, such rigorous
in rigorous forms only after decentralized handling of the temporal behavior requires a
approaches are well understood. N global view of the system and a top-down

In integrating the aforementioned techniques engineering. The RT-object based system
and others for designing fault-tolerant dependable engieering methodology meets this requirement
computing capabilities, the following major steps effectively. Therefore, for this integration step
need to be accomplished. Our basic thesis here again the RT-object model can play an important
again is that the RT-object model provides a role. In addition, similar arguments can be made
natural framework for specifying dependability for integrating security enforcement techniques in
requirements at varying levels of detail and also a coherent manner into the RT-object based
for integrating various fault tolerance system engineering methodology.
mechanisms / techniques that have evolved in
isolation. 6. Conclusion
(1) Rigorous specification of dependability

requirements This paper has presented a proposition that
This is not a sufficiently mature technology the RT-object model is not just an attractive

area in spite of the fact that the field of fault- approach for complex system modeling and
tolerant computing is at least 30 years old. It has structuring and it is actually a potential
been mentioned for the following reasons that the structuring backbone of a coherently integrated
RT-object structure offers a good framework in methodology for engineering DRS's. As the first
which specifications of dependability step on our part toward formulating concrete

63

examples illustrating the feasibility of such a and Software Faults in Real-Time Applications.",
methodology, a specific version of the RT-object IEEE Trans. Computers, May 1989, pp.626-636.
model, denoted by RTO.k, was formulated [Kim&9b] Kim, K.H "Approaches to System-
several years ago, and an experimental trb ted
specification and desipn of a simplified C3 Level Fault Tolerance in Distribute Real-Time
speiicationsystem which is based on hed RTOk Computer Systems", Proc. 4th Int'l Conf. on

d There ba e i TiOn Fault-Tolerant Computing Systems, Baden-object model, is under way. There are indications Baden, Germany, Sept. 1989, pp.268-281
that many other research organizations share our (Springer-Verlag) (Invited paper).
feeling a the appealing nature of object based
approaches to design of complex real-time [Kim92] Kim, K.H., "Design of Real-Time
systems. This raises hope that an increasing Fault-Tolerant Computing Stat ions", presented as
number of demonstrations of the potential a lecture in the NATO Advanced Science
benefits of using RT-object models in various Institute on Real-Time Computing, Sint. Maarten,
parts of system engineering will be seen in open Oct. 1992, to appear as a chapter in a volume by
forum in the future. In spite of the promising Springer-Verlag.
nature of the RT-object based approaches to [Kop90a] Kopetz, H. and Kim, K.H., "Temporal
system engineering, however, concrete Uncertainties in Interactions among Real-Time
demonstrations in this area are not expected to be Objects", Proc. IEEE CS 9th Symp. on Reliable
simple research endeavors in terms of efforts and Distributed Systems, Huntsville, AL, Oct. 1990,
costs required. pp.165-174.
Acknowledgment: The first author wishes to [Kop90b] Kopetz, H. and Kim, K.H., "Real-
acknowledge the useful insights obtained in this Time Objects and Temporal Uncertainties in
area from the cooperative work with Hermann Distributed Computer Systems", Tech. Rept.
Kopetz in Austria over the past decade. The UCI-ECE-90-7b, Dept. of ECE, UCI (& Tech.
work reported here was supported in part by US Rept. TUW-ITI- 10a90, Institut fur Praktische
Nay, NSWC White Oak Laboratory under Informatik, Tech. Univ. of Vienna), Oct. 1990.
Contract No. N60921-92-C-0204 and in part by
the University of California MICRO Program rLap92] Laprie, J.C., "Dependability: a Unify'ing
under Grant No. 92-075. Concept for Reliable, Safe, Secure Computing",

in J. van Leeuwen ed., Information Processing 92,

References Vol. 1, pp.585-593. (Invited paper)
[Ran75] Randell, B., "System Structure for

[AviS5] Avizienis, A, "The N-Version Approach Software Fault Tolerance.", IEEE Transactions
to Fault-Tolerant Software", IEEE Trans. on SE, on Software Engineering, June 1975, pp.22 0-23 2 .
Vol. Se-1 1, No. 12, Dec. 1985, pp.1491-1501. [Rum91] Rumbaugh, J. et al., 'Object-Oriented

[Bih89] Bihari, T., Gopinath, P., and Schwan, Modeling and Design', Prentice Hall, New Jersey,
K., "Object-Oriented Design of Real-Time 1991.
Software", Proc. IEEE CS 10th Real-Time [Toy87] Toy, W.N., "Fault-Tolerant
Systems Symp., 1989, pp. 194-201. Computing.", A chapter in Advances in
[Boo91] Booch, G., 'Object-Oriented Design', Computers, Vol. 26, Academic Press, 1987,
Benjamin Cummings, CA, 1991. pp.201-279.

[Dah72] Dahl, O.J., "Hierarchical Program [Wil85] Wilson, D., "The STRATUS computer
Structuring", in Dahl, Dijkstra, & Hoare eds., system.", Chapter 12 in T. Anderson ed.,
'Structured Programming', Aca. Press, NY, 1972. 'Resilient Computing Systems' Volume 1, John

[Hec9I] Hecht, M. et al., "A Distributed Fault Wiley & Sons Inc., 1985, pp. 45 - 67.
Tolerant Architecture for Nuclear Reactor and [You89] Yourdon, E., 'Modern Structured
Other Critical Process Control Applications.", Analysis', Yourdon Press, NJ, 1989.
Proc. IEEE CS 21st Int'l Symp. on Fault-Tolerant
Computing, June 1991, Montreal, pp.462-469.
[Kim80] Kim, K.H., "Recent Developments in
Safe Design of Hard-Real-Time Computer
Systems", Proc. Int'l Computer Symp. 1980, Vol.
II, Taipei, pp. 1229-1241.
[Kim89a] Kim, K.H. and Welch, H.O.,
"Distributed Execution of Recovery Blocks: An
Approach to Uniform Treatment of Hardware

64

A Methodology for Complex Computer Systems
Engineering

Alexander D. Stoyenko" Harry Crispt
Lonnie R. Welch Robert L. Harrison

Abstract

Typical among modern applications, such as AEGIS, are (1) integration of multiple ex-
isting large systems, as well as development of new systems and subsystems, (2) complex
and often conflicting objectives (security, robustness, coherence, real-time and physical dis-
tribution), and (3) dynamically adaptive behavior. Toward the goal of automated software
synthesis, we define a model for development of complex system software. In our model,
the phases of complex systems engineering are ongoing and cyclic, and include specification
of requirements; reverse engineering of existing modules and data structures; reengineering
of existing systems' designs and implementations; computation of module to table binding
strengths, module frequencies, and other metrics necessary for system optimization and as-
sessment; clustering of modules and tables based on bindings; partitioning of clusters among
processing elements; assessment of configuration for conformity to requirements and opti-
mality; monitoring and incremental adaptation. We address these concerns in an integrated
framework based on a system description language called RT-Chart.

1 Introduction

Protoplasts of the complex systems of today are found among considerably simpler Navy and
(non-Navy) real-time computer control systems of the 1940s. Since the 1940s and until the late
1980s, these systems have evolved as what has been understood as traditional or conventional
real-time systems. A traditional real-time system is relatively small (or consists of a relatively
small number of logical components) and static in nature. The structure of such a system
is typically either a cyclic executive or a relatively small number of independent, coarse-grain
processes. The system is executed on a small number of processors. In addition to the processors
(and their associated computer resources, such as memories and peripherals), the system makes
use of a relatively small number of fairly homogeneous non-computer resources (such as sensors
or actuators). Finally, while traditional real-time applications have needed to satisfy fault-
tolerance and other non-functional requirements, the mechanisms for incorporating these into
the corresponding computer systems have been relatively straightforward (such as triple-modular
redundancy).

While older Navy applications have necessitated real-time systems of the traditional kind,
modern Navy systems are considerably more complex. Typical among modern applications -

"Stoyenko and Welch are with The Real-Time Computing Laboratory, Department of Computer and Informa-
tion Science, New Jersey Institute of Technology, Newark, NJ 07102 USA, E-mail: (alex I welch)Ovienna.njit.edu.
The work described herein was performed while Welch was a visiting researcher at NSWCDD. This work is sup-
ported in part by the U.S. ONR Grant N00014-92-J-1367, by the U.S. Army Grant DAAL03-91-C-0034, by the
NATO Grant CRG-90-1077, by the AT&T UEDP Grant 91-134, and by the NJIT SBR Grants 421250 and 421290.

t Crisp and Harrison are with the Naval Surface Warfare Center, Dahlgren Division, I rdharri I
hcrisp)Orelay.nswc.navy.miI

65

such as AEGIS - are (1) integration of multiple existing large systems, as well as development of
new systems and subsystems, (2) complex and often conflicting objectives (security, robustness,
coherence, real-time and physical distribution), and (3) dynamically adaptive behavior. Conse-
quently, the computer systems that control these applications are required to act accordingly.
Specifically, the resulting systems often are very large, and are expected to adapt in a timely,
rapid and correct fashion to frequently changing environment variables and conditions. The
systems are expected to run on modern computer architectures, which often are (highly) paral-
lel and utilize many heterogeneous resources. Another aspect of such systems is that they are
expected to exist for decades, due in part to the tremendous cost of their development. Finally,
the systems need to incorporate - in accordance with the requirements of the applications they
control - a wide variety of often conflicting functional and non-functional objectives. Given
all these requirements, it is natural to refer to these systems as not merely real-time, but as
complex.

In this article we present a methodology for engineering complex computer systems. The
methodology views a complex system as an aggregate of software components (processes and
objects). The methodology is based on (1) a system-, process- and object-oriented language for
specification, design and implementation [11, 9], (2) an umbrella of conceptual system views (one
for real-time, another for fault-tolerance and so forth), (3) a softwzre component manager [3, 5],
and (4) a set of integrated techniques for synthesizing complex systems from existing and new
software systems, for execution on distributed and parallel hardware platforms [9]. Synthesis
considers the constraints of the integrated multiple view requirements, while searching for high
quality clusterings and assignments of modules to processors. For software systems (or sub-
systems) being implemented, alternate software component implementations are considered to
determine the most suitable for the application. Additionally, alternate hardware configurations
are considered.

The remainder of this article is organized as follows. In Section 2 we define a methodology for
complex computer systems engineering. Section 3 illustrates the methodology with the AEGIS
system. Finally, Section 4 summarizes what has been achieved and provides directions for future
work in this promising technology.

2 Complex Computer Systems Engineering

The first portion of this section provides a complex systems engineering framework that resulted
from studying the development process employed in the AEGIS system. The second portion of
the Section presents a complex systems engineering model that captures this framework. The
section concludes with the presentation of a system description language that allows the model
to be put into operation in an organized fashion in any complex system engineering project.

2.1 A Framework for Complex Systems Engineering

A complex system is a long-lived and evolving system of systems, having functional requirements
and non-functional requirements. Complex systems require coherent behavior at the macro level.
In fact, we assert that determinism is only needed at the complex system level, in contrast to
the contemporary real-time lore, which dictates that all components of a computer system must
be deterministic in order for the complete system to be deterministic. Additionally, there must
be a high degree of distribution of the systems and their components, yet at the same time there
must be a coordination of the systems' activities so that they are smoothly connected. The coor-
dination task is further complicated by the fact that a complex system must exhibit robustness
in the presence of faults, maintaining reasonable response times and acceptable functionality.
Thus, there is a need to manage redundant subsystems.

66

We also believe that new classifications are needed for real-time systems, so that the needs
of complex systems can be expressed. While in many real-time systems there are processes with
genuine hard deadlines, the traditional notion of hard real-time - which states that no process
can ever miss a deadline - is an idealistic view of reality. We define hard real-time systems
to be those in which (1) the physics of the problem domain defines the timelines, (2) timing
constraints must be guaranteed without exception, and (3) there is no slack for timeliness.
Hard real-time requirements occur in sensor and actuator systems. Soft-real-time systems are
those in which (1) there is coherent behavior at the macro level, (2) timing constraints must be
guaranteed without exception, and (3) timeliness must be within specified bounds. Soft real-time
requirements occur in macro-level (complex) control systems. A new class of real-time systems
is defined to be easy, in which (1) there is reasonable performance, (2) exceptions on timing

guarantees are permitted, and (3) there are no timeliness requirements. Auxiliary systems are
classified as easy real-time.

Complex systems engineers also require the ability to "throttle down" the system, by shedding
tasks of low importance during times of overload. It is frequently the cast that the exact mix of
tasks in a complex system cannot be determined statically. Thus, some system resources may
become saturated and a dynamic response to the situation is warranted. By allowing system
developers to specify the policy for handling overload, their task is simplified.

Complex systems must be synthesized from many autonomous hardware and software sys-
tems, since they bring together many resources that must be joined into a coherent and efficient
whole. Toward the goal of automated software synthesis, we define a model for development of
complex system software. In our model, the phases of complex systems engineering are ongoing
aiid cyclic, and include the following: specification of requirements; reverse engineering of exist-
ing modules and data structures; reengineering of existing systems' designs and implementations;
computation of module to table binding strengths, module execution frequencies, and other met-
rics necessary for system optimization and assessment; clustering of modules and tables based
on bindings, and partitioning of clusters among processing elements; assessment of conformity
to requirements, optimality, load balancing, etc.; monitoring and incremental adaptation. The
remainder of this Section briefly discusses each of these items.

2.2 Requirements Specification

During the first phase, the requirements of the system are specified [4]. This is accomplished
by stating the required functionality [4], as well as non-functional requirements such as timing
behavior, fault tolerance and security. During this phase, necessary system features are stated in
implementation-independent terms, using a technique such as system design factors (SDF) [1].
For example, requirements may state that the data from a particular sensor should be sampled
once per second, transformed via FFT, and matched against a set of relevant patterns which
cause the task to transmit a message to be sent to a handler routine. Additionally, the reliability
of the task could be stated as 0.11 probability of failure, and the output of the task could have
the security classification of secret.

2.3 Reverse Engineering and Reengineering

Requirements specification is followed by the task of reverse engineering, which captures the
designs of existing systems. The goal of this phase is to identify the essential features of the
systems, as defined by the reengineering, design, implementation, and optimization phases.
The reverse engineered design must allow reasoning about design and implementation tradeoffs.
Thus, it must be multiple leveled, supporting a design-time view and an implementation-time
view, with perhaps multiple views within each of these to deal with specific design and imple-

67

mentation attributes (such as timing, cost, dependability or parallelism). Reverse engineering is
a very difficult task to perform, since the system to be reverse engineered may be implemented
in non-structured programming and with low-level languages (such as assembly language). Fur-
thermore, the system is likely to be implemented in multiple languages. The use of language
constructs such as pointers and memory overlays further complicates design capture. Reverse
engineering is a multiple pass activity, proceeding from analysis of low level details, to synthesis.
Analysis begins with the examination of singie program statements and data elements. Synthesis
builds on the analysis results by examining intercomponent relationships (such as a statement
accessing a data element). The result of synthesis is an aggregation of the components (into
units such as procedures). Successive passes of synthesis result in larger aggregate components
or in additional intercomponent relationships, since the output of one or more synthesis phases
serves as the input to a later synthesis phase.

The goal of reengineering is to produce a system design and corresponding implementation
that satisfy the requirements. It is performed with the goals of (1) correctness (such as deadlock
and race condition avoidance and synchronization of access to data shared among processes gen-
erated by the reengineering) (2) efficiency (via techniques such as parallelism and code cloning),
(3) analyzability and testability (for all system requirements - functionality, timing, etc. -
even in the presence of aliasing and unbounded loops), (4) portability (thus avoid platform
specifics), and (5) maintainability and adaptability.

2.4 Configuration, Optimization, Assessment, and Metrics Collection

T/ier, are many degrees of freedom for which choices must be made in the design, implementation
and configuration of a complex system. The configuration refers to the choices of processors
and memories, their interconnection, and the distribution of software components and data
among the processors and memories. The choices made affect the quality of the resultant
system, in terms of meeting constraints and also in terms of the closeness to optimality. Due
to the complexity, selection of choices cannot be performed manually. Note also that there
are constraints of varying classes. User-defined constraints (such as deadlines and periods for
processes) are fixed and cannot be altered by the optimizer. Configuration-defined constraints
are flexible, and include items such as processor and link speeds, interconnection topology, and
software component versions. Configuration and optimization may consider the following degrees
of freedom: clustering of modules and data to be assigned to a processor as a unit; software
component to processor assignment [10, 12]; hardware configuration; load balancing; parallelism;
communication; and software component version selection [3, 5]. A multipass configuration and
optimization strategy is appropriate for complex systems due to the magnitude of the problem.
For example, in one pass a clustering of modules based on one criterion such as communication
binding can be performed using a fast, coarse greedy algorithm. In a second pass, the clusters
can be assigned to processors using an accurate, detailed, high quality optimization technique
such as simulated annealing or neural networks. The first pass has the effect of reducing the
complexity of the assignment problem, since the number of units to be assigned has been reduced
significantly.

To determine the acceptability of a particular system configuration, and to guide the op-
timization phase, the system's characteristics are assessed with respect to the system require-
ments [2, 6, 7, 8, 9, 11]. Conformity to timing, dependability, security and other requirements
is checked. A detailed set of techniques for checking timing conformity of complex systems
is presented in [9, 111. The paper presents techniques for predicting response times of inde-
pendent real-time processes that are distributed over many processing elements (PEs). The
techniques estimate contention for PEs (CPUs) and network communication links. The con-
tention is combined with utilizations (based on frequency of execution) to compute a rate of
progress experienced by clients of each device. Response times are computed as the product

68

of rate of progress and computational demand. The predictions have recently been enhanced
to apply to systems in which asynchronous remote procedure calls are allowed, thus permitting
parallelism within a task to be modeled accurately.

To evaluate the quality of a particular set of system designs and implementations, under
a chosen configuration, the values of various system attributes need to be collected [9, 10,
11]. The collection of the metrics is (in part) a static process, wherein compiler-based tools
extract information such as the set of global tables read or written by eath procedure, or the
interprocedure call graph. Additional information is collected by monitoring the behavior of the
system during execution. The dynamic monitoring can provide such valuable information as the
amount of data read from a particular global table by a given procedure, or the probability of
taking a particular branch of a conditional.

2.5 System Description Language

To meet the challenge of complex systems engineering, we propose an integrated multi-view
methodology. The notion of multiple views is not new. In particular, five essential conceptual
views are presented in [1]. However, our views are operational (they correspond to operational
requirements) rather than conceptual, and include (but are not limited to) the following views.

1. The Functional view presents a system in terms of active processes and their dependencies
(through usage of passive res urces and direct interactions).

2. The Timing view presents time-constraints of each process, and each resource or interaction
requirement (of an action). For instance, a particular process may be strictly periodic with
a deadline at the end of each period and may require a particular resource for a certain
amount of time in every period.

3. The Fault-Tolerance view presents the fault-tolerance and reliability requirements of each
process and each resource usage or interaction. For instance, a particular process may
need to be replicated and run on two physically separated CPUs.

4. The Security view presents security requirements of the system. For instance, it may
require a particular degree of clearance to access a particular resource.

As the development of a system matures - throughout specification, design, implementation,
maintenance, and even during execution of dynamically adapting systems - the treatment of
each operational requirement will naturally include increasingly more complexity. To accom-
modate such complexity, the corresponding view will support a hierarchical definition of the
operational view of the requirement. To express the view, a rigorous description language called
RT-Chart is provided.

Each of the operational views can be mapped onto and from each conceptual view (though
not every map may necessarily be equally useful). In judging an overall design, it is in fact be
useful to map different operational views onto and from a corresponding conceptual view. We
will provide "useful" maps from operational views onto -nd from conceptual views. Note that
RT-Chart can serves as an intermediate form for which analysis and optimization techniques
exist [11, 91, however, the actual language used to express the system properties may be RT-Chart
but need not be RT-Chart. One can define maps from other description languages to RT-Chart,
and the mapping can be automated. In fact, we have defined maps from Ada-package-based
and object-oriented systems to RT-Chart.

Different requirements of a system may be addressed by different teams of engineers. Each
team should thus typically develop and appreciate its own, specific operational system view.

69

- Ot

UI

_____w ---

Figure 1: AEGIS Combat System.

To integrate and maintain consistency among the different operational views, another set of
maps - this time from one operational view and its corresponding description language into
another-are provided, along with consistency checking rules. The actual implementation of I
these maps uses the maps between operational and conceptual views. Furthermore, to support
the hierarchy within eacl opeia.tional view, the hierarchical maps are used along with additional
mapping rules to ensure that maps across methodological views involve "compatible" levels of
the hierarchy.

RT-Chart specifications represent a system as a set of periodic and event-drive processes,
each composed of a set of actions. The first. action of a. process is performed at the start
of each process activation, as determined by the beginning of the process's period or by the
occurrence of the event driving the process. Upon completion, the initial action invokes a
successor action, passing sonme data. RT-Chart provides a resource algebra for stating the modes
in which resources can be used: (1) may be used concurrently (2) must be used concurrently (3)
cannot be used concurrently and (4) cannot be used concurrently and must be used in a particular
order. Additionally, and-gates allow the specification of parallel actions, and or-gates indicate
conditional execution of one among a set of actions. Furthermore, in RT-Chart, the actions may
be hierarchical, to enable macro-level reasoning and specification. We have found it useful to
describe detailed implementations of RT-Chart acticns as objects and packages. In addition to
functionality, timing and parallelism, there are other important system aspects that RT- Chart
allows to be expressed. Security classification levels can be indicated for information flows, code
(actions), resources, levels of hierarchy, and implementation details. To allow dependability
to be dealt with, degree of redundancy or reliability can be specified for actions or processes.
Another aspect of systems is relative criticality, which can also be expressed for actions and
processes.

3 A Military Example

The United States Navy has successfully developed and deployed complex systems. An exam-
ple is the AEGIS combat system (see Figure 3). AEGIS is a complex system. composed of
many systems. The main categories of systems composing AEGIS are (1) detect (2) control,
and (3) engage. The detect category consists of the LAMPS, surface radar, identification, elec-
tronic sensing, navigation, and sonar systems. The control category of systems includes C&D,

70

Iran" filer
prepare

missile
T.• M •

S deetST T .V launch

&etec and ,

radar /launcher:dtrack fRe

I 0,

signature 08 , 0

o verif W missile::Ir ack file
treckfile threat

radar,',track file

signatoure DB

Figure 2: Auto-special control.

WCS, SPY radar, ACTS, and ORTS. hi the engage category of systems, there are the LAMPS,
electronic warfare, GUN weapon, fire control, vertical launching, advanced tomahawk weapon
control, phalanx weapon, and underwater fire control.

To illustrate the methodology of the previous section, consider the anti-air warfare (AAW)
engagement control system of AEGIS. It provides the capability of automatic identification and
engbgement of quickly evolving threats. Obviously, these tasks must be performed according to
rigid timing requirements, with little variance. An early indication of of possible quick reaction
targets is given by the radar system. Detection of such targets triggers a high priority set
of actions, consisting of missile preparation, further classification of threat, missile firing and
guidance (or abortion of firing sequence if the target is determined to be nonhostile).

This set of actions can be modeled in an RT-Chart specification as shown in Figure 3. The
process is activated by a radar signal (S) arriving at the detect action. To detect, the radar
unit. signature DB, and trackfile are used sequentially (as indicated by the "o" resource usage
operator). Upon detection, a triple (S, T, M) is sent to the &-gate which forks control to
concurrent actions. The triple contains information describing the radar signal (S), the track
identifier (T) and the missile launcher and missile type (M) to be used. The prepare missile action
can use the trackfile and launcher concurrently. The verify threat action, running concurrently
to the prepare missile action, uses the radar unit and the trackfile concurrently and then uses
the signature DB. Threat verification sends the value (V)-a confirmation or a negation of the
preliminary detection-to the launch and guidance action. The launch and guidance action uses
the launcher and tra ckfile concurrently, and then uses the missile and trackfile concurrently.

Following the firing of a. missile, uplink commands are periodically sent to the missile to
control its intercept trajectory. The appropriate trajectory is determined by considering the
speeds and positions of the target and the missile, and extrapolating the position of the target.
The missile guidance action breaks down further, into a set of actions: measure target and
missile positions, calculate missile correction factor, build uplink command to be sent to missile.
transmit uplink command to missile. The missile guidance must be performed periodically
to allow the missile to intercept the desired target. The deadline for the uplink command to
be received bv the missile is stringent, since it is programmed to self-destruct if it receives
no such command (to avoid destroying the wrong object). Missing of such a deadline is highly
undesirable, since it results in the waste of a missile and also places the combatant at considerable
risk. Parallel processing is appropriate to meet such timing requirements, since there may be

71

aobor't Li

T, M, V

launcherl trackf Ile MIss e'trackf le

Figure 3: Missile control process.

multiple missiles in flight and since lie speed of missiles is ever improving and therefore timing
requirements become more stringent.

This launch and guidance actions can be modeled in an RT-Chart specification as shown in
Figure 3. The task performed is either (as indicated by the !-gate) an abortion of launch if the
hostile target was not verified, or is a latinch and successive guidance of the missile.

4 A Last Word

The engineering of complex systems re(lqires tlie integrated solutions of problems related to par-
allel and distributed processing. real-time. security, and dependability. The framework, model,
and methodology embodied in this paper addresses these concerns by building on the experiences
of the AEGIS development team and the members of the Real-Time Computing Laboratory at
NJIT. The result is a framework and corresponding approach that allow complex systems to be
specified, designed, configured. evaluated an!d maintained.

In our work so far, we have addressed the Functional and Timing operational views and have
explored thefr relationship with I the Imhplenientation conceptual view. We have also defined
a specification language RT-Spec and a design and implementation language RT-Chart for ex-
pressing operational and conceptual views. So far. we have not incorporated a hierarchy into the
Functional and Timing views nor into the RIT-Spec/RT-Chart semantics, though work on this
is in progress. Additionally, the reengineering and(metrics collection areas are in their infancy,
requiring much additional research. Anot her probliem we are continuing to address is the inte-
gration of the solution to tihe ol)timiization p)rol)lemi into the complex systems model described
in this document. We are also exploring techdi(iujes for managing libraries of reusable software
components. Tools incorporating the techniques are also being evolved with the research.

We would like to thank all members of the SSSWG. N.JIT RTCL members. and the HiPerD
team for the influences they have had on the ideas embodied in this document.

References

11] N. T. Hoang, "The Essential Views of Systems Development." Proceedings of 1991 Systems Design Synthesis

72

Technology Workshop, Naval Surface Warfare Center, Silver Spring, Maryland, pp. 3-9, September 1991.

[2] E. Kligerman, A. D. Stoyenko, "Real-Time Euclid: A Language for Reliable Real-Time Systems,* IEEE
Transactions on Software Engineering, Vol. SE-12, No. 9, pp. 940-949, September 1986.

[3] W. Rossak, A. D. Stoyenko and L. R. Welch, "The Component Manager: A Hybrid Reuse Tool Supporting
Interactive and Automated Retrieval of Software Components," Proceedings of 1992 Complex Systems Design
Technology Workshop, Naval Surface Warfare Center, Silver Spring, Maryland, July 1992.

[4] M. Sitaraman, L. R. Welch, D. E. Harms, "Influences of a Component-Based Industry on the Expression
of Specifications of Reusable Software," The International Journal of Software Engineering and Knowledge
Engineering, June 1993.

[5] R. A. Steigerwald and L. R. Welch, "Reusable Component Retrieval for Real-Time Applications," Proceed.
ings of IEEE Workshop on Real-Time Applications, N. Y., N. Y., May 1993.

16] A. D. Stoyenko, V. C. Hamacher, R. C. Holt, "Analyzing Hard-Real-Time Programs for Guaranteed Schedu-
lability," IEEE Transactions on Software Engineering, pp. 737-750, SE-17, No. 8, August 1991.

[7] A. D. Stoyenko, T. J. Marlowe, "Polynomial-Time Transformations and Schedulability Analysis of Paral-
lel Real-Time Programs with Restricted Resource Contention," Journal of Real-Time Systems, Volume 4,
Number 4, Fall 1992.

18] A. D. Stoyenko, T. J. Marlowe, W. A. Halang, M. Younis, "Enabling Efficient Schedulability Analysis
through Conditional Linking and Program Transformations," Control Engineering Practice, Volume 1, Num-
ber 1, 1993.

[9] A. D. Stoyenko, L. R. Welch, "Response Time Prediction in Object-Based, Parallel Embedded Systems," to
appear in Euronaicro Journal, 1993, Special Issue on Parallel Processing in Embedded Real-Time Systems.

f1b] L. R. Welch, Architectural Support for, and Parallel Execution of, Programs Constructed from Reusable
Software Components, Ph.D. thesis, Department of Computer Science, The Ohio State University, December
1990.

[11] L. R. Welch, A. D. Stoyenko, T. Marlowe, "Modeling Resource Contention for Distributed Periodic Pro-
cesses," Proceedings of the IEEE Symposium, on Parallel and Distributed Processing, December, 1992.

112] L. R. Welch, A. D. Stoyenko and S. Chen, "Assignment of ADT Modules with Random Neural Networks,"
The Hawaii Internatios.•.l Conference on System Sciences, IEEE, Jan. 1993.

I

An Assessment Control Board (ACB)

and a

System Integration (SI) Program

as complements to

The Configuration Control Board (CCB)

Richard Evans

May 1993

74

An Assessment Control Board (ACB)

and a

System Integration (SI) Program

as complements to

Ile Configuration Control Board (CCB)

Overylew

Systems development, especially in DoD programs, typically includes a basic program control
board known as the Configuration Control Board (CCB). CCB membership is often a
combination of both contractor and user/government personnel, or else each organization chair
their own CCB, with participation/attendance open to the other. The roles of the CCB can vary
depending on whether it is developer or user/government managed; but in both organizations the
CCB has the common function of control of program configuration change, particularly for the
baseline documents that establish the requirements, design, and testing. A developer CCB
controls the change nomination. A user/government CCB controls the changes and their
associated funding and schedule adjustments, if any. CCBs act after-the-fact in the sense that
they receive formal change proposals in specific formats, some of which may have been in prior

preparation for months.

A key to achieving assessments is a management complement to the traditional Configuration
Control Board (CCB) that takes the form of an Assessment Control Board (ACB). An ACB is a
complementary and contrasting program control board that has been applied on several major
system [software and hardware] development projects. A summary of the complementary nature
of, and contrast between, an ACB and the traditional CCB might be equated to the quote on
talent [CCB] and tact (ACB] in an anonymous quote published in McGuffey's Sixth Eclectic

Reader, Van Nostrand, circa 1878-pp 113:

Talent and Tact

"Talent is power, tact r sklAM Talent has weight, tact is momentwn. Talent knows what
to do,tactbkowshowtodoiL Talent isw ah , tactireadynmoney. Talent sees its way
clearly, but tact is&rfrt at its' journeys end Talent convinces, tact conwrs. Take them
to court and talent feels its weight, tact fnds its way. Talent commands, tact is obeyed.
Unless they are combined we haw successfil pieces which are not respectable, and
respectable pieces which are not successfuL

75

The thesis of this paper is that there is a need for both talent and tact: both assessment control

[ACB] and configuration control [ACB]. Assessment makes discoveries, the CCB disciplines

the application of those discoveries. Assessment anticipates and plans, the CCB operates after.

the-fact and regulates. While CCBs are as essential as talent, they are as equally in need of the

balance of tact [assessmentJ. CCBs alone can be deficient in three ways:

1. The CCB members involve themselves more in the detailed change proposed rather
than in the control of the process;

2. The CCBs scope is typically inappropriately constrained to program change, and that
is all too often, when presented, essentially defacto--as the majority of the investigation
resources [both time and money] have by then been used; and

3. The CCB does not meet early enough to recognize and address risks as they develop
and are, at that point in time, still controllable [time is the development's one inelastic
resource].

An ACB, on the other hand, would meet weekly, and only briefly, and focus on the control of

the assessments, in the form of one-page Assessment Plans (APs) and the results that are also

one-page Assessment Reports (ARs). The ACB focus on assessments would contrast with and

complement the CCB approval of proposed changes. As illustrated in Figure 1, the ACB

controls the work before it ever starts; the CCB controls the implementation of change, where

the design of the change has already occurred.

ACB Operation A
S. o-

.. I

* Chnge CeB operation

Figure I ACB and CCB Operations

Assessment Plans (APs)

Assessment Plans (APs) are one page, with the following attributes:

1. Scope

The work and the associated products to be assessed

76

I

2. Assessment Criteria

The criteria to be applied in assessing the work and the products. This is one of

the hardest element of a plan to devise, and accordingly one of the most critical

program controls.

3. Approch
How will the assessment itself be assessed,

How will the assessment be conducted-the format and process
Who will be on the "separate/independent assessment team-their names

4. Schedule and cost
The assessment milestones and the proposed investment in assessment

The ACB, by approval of the one-page APS, exercises the essential *tact" influence of a project,
j as a complement to the CCB 'talent". By directing the plans for assessment, the ACB directs the

future, in addition to controlling it.

I System Integration (SI) Program

A parallel development concept that can be applied to strengthen the CCB is for the ACB to also

S sponsor an SI program for CCB control. The objective of an SI Program is to assure that

proposed changes are well prepared for CCB consideration. Changes may be changes to the

configuration of the program architecture, and schedule as well as a change to the design. There

are three primary dimensions of an SI program, collectively they are known as the three Is, they
I are illustrated in Figure'2

1. Identification

2. Investigation

3. Implementation

I -- - Investigation

FImplementaton

Figure 2-ACB-Sponsored and CCB-Controlled SI Program

77

The driving influence of the Sl Program is in the first two "Isn: Identification and Investigation.

These are supported by a four-part SI Program structure that is illustrated in Figure 3:

1. Use of System Reports (SRs) as individually numbered records of every problem,

suggestion, insight, or idea. An SI Database is built on the ever-accumulating set of SRs.

SRs are recorded as symptoms, so to speak, without prejudice. They are not filtered by

any criteria, such as who said, or how they were reported, or whether they were

validated. They are accumulated and honored by a unique SR Number that is never

reused. Thus, while the SR may be plaued in an inactive file, its identity, its number,

always remains unique to that SR.

2. The use of non-representation Problem Area (PA) teams to assess the overall program

handling of the SRs. The team members are drawn from both the user/government and

the developer and serve as professional collateral assignments and not as representatives

of their parent organization's management priorities or interests. The PA Teams assess,

they do not have responsibility for solutions. They recommend initiatives, but they do

not sponsor changes to the CCB-with the attendant responsibility to implement approved

changes. The PAs monitor the process, both its design and operation

3. Candidate Program Initiatives (CPls). CPIs are temporary homes for potential

program initiatives. CPIs are unfunded and without a designated management
responsibility. They are the initial planning framework, neural territory, for the

allocation of SRs. Noting that SRs are allocated redundantly, with one primary

allocation and multiple secondary assignments.

4. Program Objectives (POs). POs are funded, have assigned implementation

responsibility, and are the formal vehicles for configuration change. POs are assembled

as the implementation packages from the array of CPIls. They may be one entire CPI or

include portions of many.

78

I

sR-oo3 ! \ • a-Ol (CPU)S R 00
I"
I

I

S gu 3 CH P0ogrPm

' The Investigation Process has a central feature of the use of Round Tables (RTs) to strengthen
the investigation. The Investigation Plan (IP) is considered by a panel of three to five eprs' The RT is the assessment team for the planned investigation. The IP includes [as item 4] an
Assessment Plan [approved by the ACBJ as a key pert of the Investigation process. The liPI defines, for the RT consideration, the following top-level attributes of the planned investigation:

J 1. Problem/Opportunity A summary of the problem or opportunity to be addressed.

2. Approach The key features of the approach to the investigation effort.1 3. Resources Staff-Months, Schedule for the activity, and an estimate of the "ranges" of
the Implementation/Life Cycle Costs or Implementation Resources Requirements Range
(1R3) that span the high-low for three parameters: Duration [how long to build], CYI [calendar year for start] and costs.
4. Assessment The assessment plan, identifying the proposed assessment team members,
the plans and products to be assessed [assessment milestones] and the principal criteria to

be applied in those assessments.
5 References. Available background material-what is already known about the problemI and alternative solutions and approaches.
6. Products and Schedule Thne principal deliverables--the tasks to be accomplished-with
their milestone schedules.

The CCB controls the transition from Investigation to Implementation. By operating an SII Program, the ACB supports the CCB with proposed changes that have been appropriately
considered, with up-front review by an RT, that can include a public "hearing" format where all

I interested parties can be apprised of the planned investigations.

79

Summary

Assessment plans and reports are necessary complements to program control through CCBs.
CCBs are essentially totally after-the-fact. The resources [both time and money] to prepare the
proposed changes has already been invested by the time the CCB receives them for
consideration. The operation of an ACB is management working up front, where the leverage is
greatest. The ACB works with one-page Assessment Plan (AP) summaries for the planned
assessment of all work. The scope of some APs may be very large, others very small, as the
ACB approves. Some work may be small in dollar scope but large in significance. The ACB
influence of how work is to be assessed is a prime lever on what is to be done. The criteria for
"goodness" and the names of those who will prepare the assessment report are key management
influencers. The Assessment Report (AR) is generally succinct, not belabored. Does the work /
product meet the pre-established criteria? The plans for the AR is itself part of the AP that the
ACB controls.

Operation of a planning process, called an SI Program, based on SRis as the primitives for all
planning, is a potential added aid to the CCB. With an SI Program, the CCB receives proposed
changes that have been identified and investigated with care-by pre-planned assessments.
Further, an SI Program works with bipartisan Problem Area (PA) Teams [that include both
customer and developer members- not as representatives of their organizations, but for their
expertise only] to monitor the implementation and the planning from the perspective of their
"problem area'. They particularly concern themselves, working on a very low duty cycle-an
hour a week or less, with the planning to address their assigned SRs. What is being done with
the symptoms [a synonym for system report or SR] they have monitoring cognizance for.

Investigations are as critical as the assessment of assigned work. How investigations are to be
accomplished is a key concern of the ACB. A central feature of the Investigation Plan (IP) is the
Assessment Plan (AP) for that investigation. A built-in feature of every Investigation AP is the
use of a Round Table to provide up-front assessment of the planned investigation-an assessment
of the IP itselL The one-hour or less [or not as a face-to-face meeting if preferred] meeting of
the RT members assures that the planned investigation is well-considered. While the primary
need for an ACB type focus is on the plans for Investigations, nominated by one-page
Investigation Plans (IM), an ACB-controlled operation of assessment teams could also be
effectively applied across the full span of the software lifecycle. The idea is that, at least in
addition to, [and possibly in some cases even in lieu of] the after-the-fact milestones of System
Design Reviews (SDRs) and Preliminary Design Reviews (PDRs) there could be a concentrated
focus where the leverage is greatest. on the plans for the conduct of each phase.

80

A Generic Object Oriented Conceptual Pivot Model

Naoufel Krafem

Laboratory MASI/CRI, University of Paris I
17 rue de Tolbiac, 75013 Paris

naoulel @ masi.ibp.fr.
Phone :+(33).1.44.24.93.65

Fax :+(33). 1.44.86.76.66

information system domain. Object-oriented design
Abstract: The emergence of the object philosophy in deals with the solution space, the *how" of
the new software development techniques gave birth to technical design, and generally emphasize the
many object models. The object-oriented approach organization and reuse of code. Object-oriented
enables the improvement of software quality, the analysis is concerned in the problem space, the
reduction offuture maintenance requirements, the reuse "what's" of requirements' specification, and
and the adaptation of specification and developments, centers on the semantics of the phenomena,
However the difficulty lies in the transition between the
conceptual specification and the implementation because postponing technology-dependent choices.
of the disparity of the formalism proper to each level. To Object-oriented design methodologies are focusing
resolve the problem, we propose an object oriented on system design as a later stage of the application
interface supported by a software tool and based on a life cycle, implying that the earliest stage leading
pivot model ard a set of mapping rules. This research has to requirement's specification and conceptual
been developed within the framework of the ESPRIT 11 design, have been performed.
project named Business Class] Object-oriented analysis methodologies are still

under investigation. Three main approaches are
Keywords: object-oriented analysis, objec-oriented being proposed:
design, software engineering environment. in•onnation - the functional approach uses traditional DFD
systems development, based techniques to derive object specification

- the data driven approaches are influenced by
1- INTRODUCTION: E/R modelling to define objects

- the object based approaches recommend the

The Object-Oriented approach emerges in certain use of the object concept right from the beginning of
number of data processing domains, such as the system life cycle. The concept of object is then
programming, software engineering, data base, the basic element the system relies on.
DBMS, analysis and design of data base and The claim of these approaches is that
information system. The paradigms underlying the enhancements and extensions of the computational
computational object-oriented are stabilized objeci concept are required to make it relevant to
enough to consider that they are providing a conceptual modelling.
unifying approach for information system O [Brunet9l], MCO [Castellani93j, (OOD, GOOD)
development. [Booch86,87] HOOD[Heitz89], OMT [Rambaugh &
Object-oriented requirements, analysis and al.91], OOA[Coad & Yourdan9l), and OOSA
specification models are henceforth the subject of [Shlaer&Mellor9l] are examples of approaches to
an active research effort. Indeed, object-oriented support conceptual modelling in an object-oriented
design techniques (e.g. [Booch87J, [Heitz89], way.
[Meyer90], [Wirfs-Brocks90]) do not resolve all the The paper aims at presenting an oriented
problems of object-oriented development in the conceptual modelling and object-oriented

implementation. To do so, we propose an interface
supported by a software tool and based on a generic

This project is supported by the European Commission object-oriented conceptual pivot model and a set of
under the contract 5311 of the second European Strategic mapping rules.Program foe Research and Development in Information
Technology (ESPRIT). The main partners include
Tdlisyst~mes (France). Sociftt des Outils du Logiciel The problem of the design and the implementation
(France). Applied Logic (United Kingdom). Eritel (Spain) and of information systems, was an impetus for theDatamont (Italy). U1niversiti de Paris I involves in the development of framework for object pivot model,development of the analysis environment and the based on a general metamodel and Object Oriented

integration of the tool in the PCTE-based software
en~ineering environment. Conceptual Pivot Model (CPM). The following

81

section presents the object oriented conceptual automatically. So the object-oriented approach in
pivot model. Section 3 illustrates the framework systems development is applied in principle
and a set of mapping rules by means of examples. without restrictions caused by implementation

environment, whether it is object-oriented or not.
For representation of the aspects of an OOCPM we
use diagram techniques:

- Class relationships diagram for the static
structures (static representation).

Rea onh Associatn - Dynamic diagram (dynamic representation).
RelationsOle Relationships To represent the conceptual static structure, we

propose an extension of E/R model [Chen76],
"because its diagrams are well-known, usually used,

Source Concepts Target Concepts• have great expressive power and used by the mostSc (object-oriented methods (OOSA [Shlaer & Mellor
I 91], OOA [Coad & Yourdan9l], OMT [Rambaugh &

Fig 1: Mela-Model of Framework a191]. These methods use E/R model to let the
designers and analysts who are already familiar
with this model to have the impression of not

2- The Object-Oriented Conceptual Pivot changing their habits.

Model: The model that we present, solves some of the
limitations of the existing models (e.g. the model

Modelisation of the real world consists of E/R take into account the modelling of the
regrodeuaion objecthe inrclaseas of sametypeanstructural and static aspects of a real-worldregrouping objects in classes of same type and system; the aspects related to the evolution of
describing relationships that can exist between data and the dynamic aspects are not tackled).
them. The proposed model is a conceptual one, it
Developing an information system, real world independed of all implementation issues. It takes
classes (or entities) are modeled by corresponding into account not only the static or structural aspect
objects in information system. For describing the but also the dynamic or behavioral aspect.
data and behavior of an information system it It generalizes the object-oriented conceptual
should be decided which classes are relevant, and models such as the OOD [Booch9l], OMT
which behavior is to be expected from those [Rambaugh & al. 91], QOSA [Shlaer & Mellor 91],
classes. The behavior of information system is a OOA [Coad & Yourdan9l], for the conceptual
reaction of one or more individual objects to modelling and extend then to the modelling of the
external events detected by the system. The functioning of the methods. The order of the
behavior of object depends on the kind of event, its organization of constraint is not tackled.
internal state and possibly the internal states of o
other objects with which it may have To represent our model, we select notations for
relationships. expressing class type, association, composition,
In specifying objects we distinguish static and roles, subtyping (specialization/generalization)
dynamic aspects. Static aspect concerns the and genericity. These figures below represent the
attributes of objects and the relationships between static relationship types:
classes; dynamic aspect concerns, the actions or
operation executed by or on classes.

2.1- Static Model: i I c

Our approach in systems development is to support Representation of association
the systems analysis and other models by means of
diagram techniques in order to capture the Where cl and c2 are cardinality constraints and rl
different aspects of information system. After the and r2 represented roles.
modelling of a pivot conceptual model, it is
possible to map the OOCPM description to
different database environments and programming
languages. Our aim is to bridge the gap between
object-oriented conceptual modelling and object-
oriented implementation. To do so, we propose an
interface supported by a software tool and based on
a pivot model and a set of mapping rules. Then
that database schemes and code can be generated 82

deletion of a composite object implies the deletion
of all its components. Creation, modification and

CuTe eu detion of component objects may be achieved onlyM through the composite object.
For example, in figure 6, Account is a part of Client.

I "] Inheritance:
Ua.c•, I a: Subtyping or the inheritance relationship aims to

Where c is a cardinality of composition link and T factor out the structural properties, behavioral
represents the type of generic class, properties and the constraints common with

several classes (sub classes) in a class in a higher
Association: hierarchy (super-classes).
The associations establish relations between The inheritance considered is the inheritance by
objects. They are expressed between, classes and inclusion that has the "is-a" or "is like of"
they may be binary [Rambaugh & a191]. They are semantic between different elements:
used to describe the conceptual relation that binds Generalized object structure C Specialized
objects together. They can possess their own object structure
attributes and become classes if some operations Generalized object behavior C Specialized
are associated by the designer. object behavior
Cardinality ratio and participation constraint are As a consequence, it is a semantic link relating two
expressed by structural constraints represented by a objects of the classes on which it is defined. It does
pair of integer numbers (n, m), where n is a min and not presuppose the exclusivity of the
in is a max, with each participation of a class type specialization. Three types of inheritance
C in an association type A, where 0 < n 5 m. This constraints may be defined with our model. They
means that for each object 0 in C, 0 must restrict the possibilities of existence of the objects
participote in at least n and at most m association of several specialized classes, for each object of the
instances in A always. This convention is the same generalized class [Brunet 91] :
as the one introduced by Elmasri [Elmasri90]. Disjunction constraint: A disjunction constraint
The Roles represent a temporal behavior of object between several specialized classes expresses that
[Pernici90]. Classes may play several roles the intersection of their extensions is empty2 .
simultaneously.
For instance, in figure 6, the object Order is <S>i r<S>k =0, V i*k
associated to only one Client. G

Composition:
The link of aggregation defines "part-of"
relationship between an aggregate object and one or
many component objects. It can be considered as a
special link of association but with stronger For instance, the classes Car and Van both inherit
constraints, from the class Vehicle. The disjunction constraint
Notice that, two objects having an independent implies that a vehicle is either a car or a van, or
life-cycle should not be linked by a link of something else.
aggregation but by an association one [Rumbaugh&
al9l]. The link of aggregation is a current concept of Covering constraint: A covering constraint between
the object-oriented analysis methods [Manfredi89], several specialized classes expresses that the
IHenderson-Sellers9l], [Teisseire9l]. It is defined union of their extensions is equal to the extension of
by composition link in our model, the generalized class.
The semantics of a composition link between a
composite object and a component object is that the - <S>i = <G>
composite object is composed of the component G
object, which is strongly dependent and belongs
exclusively to the composite object. A component
object cannot be shared by or changed of compositeobject Z
The composition link induces a strong coupling of
the dynamic characteristics associated with the
composite and the component object. It is resumed in 2 Let: G be a generalized class (abstract or persistent) and Si
the following rules: a specialized class i (a subclass of G). <G>: the set of G
The creation of a composite object implies the instances. <S>i: the set of Si instances.
creation of at least one component object. The 83

For instance, if the classes Client and Supplier
both inherit from Person, this constraint stipulates The Integrity constraints are specified to ensure
that each person must be a client or a supplier (or those attribute values, states and behavior of
both) objects in an information system accurately model

corresponding real word object.
Notice also, it is possible to combine many
constraints. For instance the 0* partition Properties: I
constraint it is represented by a disjunction and a A class is composed of properties that determine
covering constraint (i.e. each instance of the its structure.
generalized class is specialized in one and only one A property is strongly depended of the ownerI

of the specialized classes. For example, a person is object, and determines one of its characteristics. A
either a man or a woman). property may be changed only by using the

operations defined in the class. It is defined by a
__ __ _ name and a set of values. It may take its values

(U. <S>i - <G>) and (<S>i n<S>k = 0. V i*k) either in a domain. The types of data, or domains,
G which are used in our model are those which are

used in the object-oriented models: the pre-defined I
types (integer, real, string, text.), Enumerated
types defined by the analysts, and the pre-defined

__ Sn types to which can be associated an interval or a
With these constraints, we are covering all the set of rules. The most well-know object-orientedtypes of constraints that exist into the most analysis methods today [Booch9l],typels. o[Coad&Yourdan90], [Rumbaugh&al91], [Shlaer&Mellor9l] do not define more complex data.

Generidty: Notice that, our model supports the multiple

The genericity provides a way to parameters domain as the most programming languages.
classes. A parametrized class, or so-called generic
class is a class that is being used as a model by 2.2- Dynamic Model:

other classes. It consists of generic parameters and
cannot be instanciated directly. The definition of a The elements to be represented firstly are the
parameter's class is derived from the classes actions. They are executed in the organization in
parametrized, in which it provides a value to the terms of management rules. These actions modify
parameters. The notion of genericity is supported the state of the elements. They are invoked during
by many object-oriented programming languages. some precised situations: an arrival message
For others, the inheritance can pratically support coming from outside, a noteworthy change of state
any thing allows to carry out the genericity [Meyer that happens in the organization, or a previous
90]. But the inheritance and genericity temporal situation.
simultanously is considered as an utility in These situations correspond to events. The concept
practice [Booch9l]. For our model, typing would be of event is used in several methods such as IDA
meaningless without the possibility of defining [DeAntonellis8l], Remora [Rolland82], 0*
generic classes. A generic class is one that has one [Brunet9l].
or more parameters representing types. A class Actions and events are the two key concepts of
with one generic parameter is declared under the modelling of the dynamics of own model.
form The actions and the events of the Universe of

Cass <class-name> [TJ Discourse are represented by the concepts of

And used by clients in declaration of the form: operations and events which are described as
x: <class-name> [A] follows:

Where A is some type.
Events:

Constraints: The event concept [Rolland88J, [Brunet9l] is
Some kinds of static constraints, which concern introduced in order to model the dynamic aspects of
relationships between two objects(e.g. Cardinality the application domain. Operation expresses how
constraints, association constraints) are specified objects change. Event explains why they undergo
by instanciation of the composition and association changes.
concepts. Other static constraints that are local to An event occurs when a noteworthy state change
an object may be expressed by equations on the happens either in the environment, in one object of
scheme properties and associations. They are the information system itself, or corresponding to a
specified in the constraint's item of the class, as predetermined time. It triggers one or several
illustrated in figure 7. operations on one or several objects. An event

84stimulated by the environment is referred to as an

external event, an event due to an object state real world complexity is due to these dynamic
change is called internal event, and the third kind interactions [Brunet9l].
o of event is called temporal event. An event has a
name. Its definition includes a predicate part Behavioral constraints
which specifies its occurrence condition, and a Behavioral constraints are concerning the dynamic
triggering part which specifies the operations to aspects of a class: they restrict the possibilities of
be triggered with their associated conditions and execution of some operations. As for structural
iterations. constraints described' before, behavioral
The advantages of the event concept in the object constraints are local to a class.
definition are as follows :

- All the static and dynamic phenomena are We chose to specify the dynamic constraints by the
specified into classes; object encapsulation is way of state transition graph, rather that by the
realized by operation and events, assertions of first order [Sernadas89] or temporal

- behavior and operational dependencies are logic [Jungclaus9l], for the following reasons:
clearly specified A state transition graph describes a local dynamic

- Events lead to study local situation fully constraints at one object (principle of localization)
delimited by state change of only one object. and it provides a simple and abstract view of
Our notion of event is similar to the one described behavior of object. It facilitates the process of
in 0* model [Brunet9l]. It is textually described specification, completeness and validation of
below the keyword "event". dynamic constraints OOD [Booch9l], OMT

[Rumbaugh&al.91].
Operations: States determine sets of legal actions on objects.
The evolution of the objects is effected by They can be represented by attributes. State
executions of operations, transitions are caused by actions on objects. Actions
Following the encapsulation principle of the are caused by events. An action induces the
object-oriented paradigm, the only way of transition of an object from one consistent state to
affecting (i.e. creating, modifying or deleting) an another consistent state. A state transition may be
object is to execute an operation specified on the represented by a function:
class. Figure 2 illustrate an example of graphical 6: S x I-> S
re resentation of OOCPM operations. Where S is a set of finite states and Y is a set of

Graphical represemaion: finite operations.
ORDER The function of transition indicates, when the

Creation object is in a certain state and that an operation is
invoked. The nodes of the graph are the states, the

delivery arcs and the labels are fixed by the function of
inc ,transition.

For instance, in order to represent the case of an
cancellation electric bulb, the operations are the moves of the

17 -)interruptor. There are given as follows:
Fig 2: Descriplion of OOCPM operalion S={lighted, extinct)

OP=(invoke the interruptor, release the
The execution of an operation is always the result interruptor}
of an event occurrence. Different events may trigger sa = lighted
the same operation. 6(extinct, invoke the interruptor) = lighted

Dynami BAIL (extinct, release the interruptor) = extinct

The utilization link establishes a path allowing 5 (lighted,rinvoke the interruptor) = light

the message reading of an object to another object. the
The semantic of the utilization link is that a client This example may be represented by state
object uses the services of a server or supplier object. be
It is called the client-server link in the OOA transition diagrams as following:
[Coad90] model. In our model, this link is releasedieintanijs invoketheinaezna
translated by a dynamic link.

invoke die iintem"Wpam
The dynamic relationships among objects are A=::&
explicitly specified through events and liftted

simultaneous triggering of operations. It is
important to make explicit these relationships at In1iti Stae releaw the intenmuor
conceptual model because an important part of the

85

<static constraints> <attrbute constraints> 1
2.3- Schemne representation: <inheritance constraints> I <uniquenes constraint>

<attribute constraints> ::<expression>
A class type provides an unambiguous description <expression> <simple-.expression> I
of the structural and behavioral characteristics <CpoflXsed-exJressiofl>
that are common to a population of objects. <simple .jIpression> <term>

Eacha cass ypehas ne r moe poperiespi comparaison-.operator> <term> I <Wmi>
Eac aclas ypeha on o moe roprtes ~, <zenn> :: <,atritiute-name> I

which form a set P (vi 6 P). The value of a OLD.<autribute-name> I NEW.<:attribute-naine>
property remains unchanged during the life cycle <method-name> I <constant-namne>I
of the object occurrence. <comnposed-.expression > :: <simple-.expression>
The state of object occurrence is represented by an <logical-operator> <expression>
attribute state. The different state values sti of a (pradicate > :: <expression>

clas ypefom ase St(si C S).<operator> <logical-operator> I <seLoperatorD
Eahclass type foma se Stne omre St). rant cnI ogicaL-ope razor> :: OR I NOT I AND

Each ~ ~ ~ ~ ~ ~ ~ srqprtr cls:yehsoeo:mr osrit fj IN I UNION I INTERSECT
which form a set Cn (ciii e Cn). <comparaison-.operator> :: I > I < I k 1: 1 i
Each class type has one or more operations opi, <inheritance constraints>: <dlisjunction> I <covering>
which form a set OP (opi CE A). Each action has a <disjunction> <S>i r)<S>j= 0, V irjI
valuation, iLe one or more rules stating how
attribute values are changed or computed by the <cov'ering> USi= G
execution of an operation. <uniqueness constraint>: UNIQUE (<attribute>,)+I
Each class type has on or more events evi, which <operation> :: <operation-namne> <Boby of
form a set Evt (evi 6r Ev t). operation> [<Type of Operation>]

A clss ype an e decried s a upi <rstCn, <Type of Operation>:: PUBLIC I PRIVATE I
AP clsstyp a edscie satpl P t n PROTECT'

OP. vt>.<event> ::<event name> <event type>
We give here the definition of the textual [<predicate> I <mes.%age>] <trigger>
specification of the base class type. An extended <message> :: paramaterrs>)+
Backus-Naur Form is used to specify the syntax to <trigger> ::<operation name> ON <class

be derived from the conceptual framework: name> [(cFbcteur>)+] [(<Condition>)+]

Class <class-name> [<Type>] The following figure presem~s a synoptic of the useI
[Inherits from J< superclass-name>).] of different concepts in several representative
[Properties methods of Object-oriented analysis and design.

(<attribute-name>: carttibute-typc>).J Some methods focus on the static's characteristics
[States (OOSA, OOA, OMT, MCO), others on dynamicI

(<state>)+] ones (OOD). Our model, OOCPM, takes into
[Associations account the two aspects (static and dynamic).

[Constraints
(<static constraint>)+] objul.Ontdc.wep I A OOAD OMbT OOD 00 MMO OOCfl

[Operations _ _

[Events ot., F *.V* _5 -------- _
(<event>)+] ______ *niw -F- -F W 16 V ~-W

End --- cls I *000

With .mwlf/upbf _ _

<Type> ::The generic parameter Gem ____ - -

<aurribure-zype> ::<basic..doznainAl- -
<collectionjlomain> I <aggregate.Aomain> I 0
<enumerated-iomain> I <dornaine-intervale> m*baMwl 0 * 0 0 0 0
<basic-.domnain'> ::integer I real I date Istring I F I V V V F T
boomea ... ______

<cofiecfinonwimin> ::SET OF (<class-name>) ±..
<enuonerated-minain> ::ENUMERATED ((value) +) Sign _ ±~ ± .. !

cim~envaLdonain> ::[min..max] mswi0 0 0 0 0
.caggregaze-donain> ::AGGREGATE OF a"d' a - * S @5 S
(<agrgate-name-class>) Cuivol*Towns __ * *
<association> ::ASSOCIATION
<association-name> OF <class- I -name> Fig 3: A comparative Ob7ject-oriented mnethods
[C~ardmin,Cardmax]. <class-2-name> [CardminCardn-ax]

<stae> : 8 S X7, > S86

3-Mapping of OOCPM 3.2.1- Transformation rules of the conceptual
schema

3.1- General Overview The transformation of a conceptual schema (i.e.
the product of modelling) into elements of the

OOCPM aims at assuring a mapping, guided by a OOCPM is presented below. This study is based on
software tool, from any conceptual specification the 6 well-know concept al models (OMT, OOA,
towards an implementation. The interface consists OOD, OOAD, MCO, 0*):
of an object-oriented pivot model, Rc rules for the Note also that the conversion into the conceptual
mapping from the conceptual model to pivot model pivot model may be as follows:
and Ri rules from the pivot model to object- - mapping simple (1-I); it is represented by a
oriented implementation (language and function:m(Cs)=Cp
persistence). - grouping (n-1); it is represented by a function:

gl(Cs)l= Cp
The figure below illustrates the pivot model: - retyping (1-1); it is represented by a function:

1* r(Cs) = Cp
".ct-Oriente - explosing (1-n); it is represented by a function:

Analysis Models e(Cs) = 1Cp}
P 'where Cs is a source concept and Cp is a pivot

concept

R To transform the user's object-oriented conceptual
schema, the following Rc rules must be used:

.Rr RcClass: Each source entity or source class is
Ri transformed into a pivot class in which the visible
R ti attributes are the properties which characterize

uo i liO the corresponding class.
For instance,

) m(O" class) = Pivot_class
OjcO eImpleetation m(MCO class) = Pivot.class

m(OMT class) = Pivot-class
Fg 4: m(OOA class) = Pivot_class
Fig 4:OO M

RcAbstClass: Each source abstract class or actor
Where Rc rules are used to transform the user's class is transformed into a pivot abstract class (a
conceptual schema into pivot model. Ri rules are class without instance variable).
applied to lead to an object-oriented programming For instance,
environment and Rr rules are used for refinement. m(O* actor class) = Pivot-abstract-class

3.2- T am(MCO abstract class) = Pivotabstractclass3.2-The Mapping rules between the Object-

oriented analysis models and OOCPM RcAttributes: Each attribute of type property is
translated into attribute property pivot according

The conversion of a given conceptual schema (a to their types (predefined, LIST OF, SET OF,
result from a certain modelling) to a standard ENUMERATED, AGGREGATE OF ...).

software architecture with the help of the
concepts of our pivot model is carried out in the RcAttHist:. Each variable attribute, that can be
following stages: historised, requires to memorize all the state

changes, is transformed into aggregate attribute in
Firstly, the conceptual schema is transformed into which is specified the temporal aspect (date,
an OOCPM by the application of the very precise hour).
transformation rules that assure the tracability r(AttributeHist) = AggregateAtt
between a given modelling and a standard generic For instance, To keep all the client addresses,
design. during all their lives:
Secondly the results of this transformation, by
applying a set of rules are transformed into a
language or an environment (design product) that
will be ready to be implemented.

87

Class client I
Properties I RcSemLink: The rest of each source semanticaddress: AGGREGATE OF (ad: AGGREGATE OF link is transformed into a pivot association link by

(sreet: string, number: integer. city:I
string. counstr: siring). d: DATE) c specifying the characteristics between the implied

classes. For instance,
r(OOD Utilization link) = Pivot association link

Rc_.StatConst: All source concepts of type static r(OOSA Utilization link) = Pivot association
constraints are translated into a Static Constraints link N
pivot according to their nature (uniqueness or r(BON Utilization link) = Pivot association link
attribute).

m(O* Uniqueness Constraint) = Pivot RcInheritanceLink: Every simple or multipleUniqueness Constraint
re(Cue Attribute Constraint) = Pivot Attribute source inheritance link is transformed into a simple

Constraint) or multiple pivot inheritance link (i.e. inheritance
by specialization) by specifying the constraints to
restrict the possibilities of existence of the objectsRc.AssClass: The notation of an associative class ofsvrlseilzdcasefrec beto

type was adopted from OMT [Rambaugh&al91] of several specialized classes, for each object of a

OOSA [Shlaer&Mellor9l], OORM[Hwang9O], generalized class, if necessary. For instance,

EROOS [Baelen92]. An associative object may r(OMT Inheritance link) = Pivot inheritance

have attributes, life cycle and a role. The concept link (with a disjunction constraint)

Of asocatie enitycorespnds o cmpoiter(OOSA Inheritance link) = Pivot inheritanceof associative entity corresponds to composite link (with a disjunction constraint)

entity as it was introduced by Chen [Chen85] and link (wtai unction constraint))

used by the OMT and OOSA by using the concept Piot Inheritance link (wisth andisnct
assoiatie clss.Pivot inheritance link (with a disjunctionassociative class.

This type of class will be transformed into a pivot constraint)
n of association with m(* Inheritance link (covering constraint))

clatess by specifyingstheplins Pivot inheritance link (with a covering
the test of the classes implied.

Every source associative class (for example: OMT, constraint)

OOSA) is transformed into a pivot class in which m(O* Inheritance link (partition constraint)) =

the attributes are those from the associative class. Pivot inheritance link (with a disjunction and

For instance, covering constraints)

r(OOSA associative) = Pivot class RcGenericity: Every source genericity concept is
r(OMT associative) = Pivot class transformed into a genericity pivot by specifying a

RcAssRelationShip: Every source relationship type. For instance,

of type (n-m), which is accompanied by properties m(OOD genericity) = Pivot genericity link

is transformed into a pivot class. The attributes of A same example is described here after using the
this class are the properties which characterize two source models, 0' and MCO and its translated
the association type. The identifiers of the classes
or entities implied in the association are added In this 0* example, we note a covering constraint,
into the properties of the pivot class. I hs0 xmlw oeacvrn osrit
Forinsotane, poeach person must be a client or a supplier (or both).
For instance, In the MCO example, this constraint is represented

m(OOSA association) = Pivot association type by an abstract class Person (non instanciable)
c(HendersontSellers association) = Pivot whereas Client and Supplier are persistent classes.

association type Lower level classes may be created to represent
m(OMT assbciation) = Pivot association type clients who are suppliers at the same time.

Discussion about creation of such classes can beRc..Agg...Link: Every source aggregation link is found in [Castellani93].

transformed into a pivot composition. This link To r n static bti

will be simple or multiple. To represent static links between objects, in w* one

For instance, way arrow is used where as in MCO double way is

r(OMT aggregation) = Pivot composition link required.

r(OOA aggregation) = Pivot composition link
r(BON aggregation) = Pivot composition link

RcCompType: Every source association link in
which c2 = (1,1) is transformed into a pivot
composition link according to the cardinality cl:

ifcl E 1(0,1), (1,1)1 => Simple
if ci e {(0,N), (I,N)) => Multiple

88

m(MCO Service) = Pivot Operation
'snI Demand o For instance, an order creation operation is

Acon E uple renlenishmeni translated into a OOCPM as follows:
Class ORDER
Pro perates

creation-date: DATE
Deliwry_date: DATE

-Supplier Invoicedrdate: DATE
Sales

,created, delivered. invoiced)
U f5i(,SO. Creae_Order)-created

6(create4 Delivery)= delivered
(0 S L& mand of |(delivered. invoicing)- invoiced

S [n renlenihmen] Associatioes
ASSOCIATION Ordjne OF Order 11IM],

0 IOrder-Jin ION
Acco 0% ýA ASSOCIATION Ck..Ord OF Order /1.I1, Client

Accoui 1o-N]
Constraints

creation-date S delivery-date
deliveyy_dea e S invoice_dateI [Operation

CraemOrder: PRIVATE
A (Var: number, ordjine. create-date,...)

Fig 5. An MCO and O* graphical descriptions of the Precondition: absent order
static relationships between classes (Source Models) Body

(Create_ Orderj-ineO l+
--- create one instance of order

rODemaand of EndBody
Juile Posicondition: state = 'created'

1 '.I" End

Fig 7: An example of operations
CC1 lt Itic RcEvent: Each source event type is transformed

into an pivot event depending on its type (internal,
external or temporal). For instance,

dOr er line r(OMT Event) = Pivot Event (According to types)

Fig gp lsRcIntEvent: Each source internal event is
Fig 6:An OOCPM graphical descriptions of the .tatic transformed into an internal encapsulated event in

relationships between classes (Pivot Model): the corresponding class ascertained. For instance,

The dynamic concepts (operation, event, state m(O' Internal Event) = Pivot Internal Event

transition graph, service, actor ...) are mapped Rc-ExtEvent: Each source external event is
using the following rules: transformed into an external pivot event. The

RcOperatton-Action: All source concepts of type attributes of this source event type are constitute
operation, action or service are translated into an the corresponding. external message. For instance,
operation aionl m(O* External Event) = Pivot External Event
operation pivot. r(MCO Event Model Object) = Pivot External

Some models describe operations by a text in Event

natural language (example 0*, MODWAY RcTempEvent: Each source temporal event is
[Cauvet93J. This text specifies the operation tr m ento a Sorce pemot event is

purpose and the rules according to which attributes transformed into a temporal pivot event. For

and states are valued or changed. In this case, the instance,

designer has to give his algorithm details using, m(O* Temporal Event) = Pivot Temporal Event

when needed, the classical instructions For example the product event (out of stock) can be
(IF...THEN...ELSE...ENDIF, WHILE END...). translated into a OOCPM as follows:
If the model uses a formal specification language,
the translation will be automatically done into a
pivot model specification language. For instance,

r(O* operation) = Pivot Operation (with a
specification of the body of operation)

89

Class PRODUCT with method or routine (precondition and
51otions postcondition are mandatories).

Fvxts RiStaticConst: Each uniqueness or attribute
out of stock. internal constraint is translated into an invariant or using a
predicate

(OLD.qte-stock Z replenishmenttlevel) and specific method.
NEW.qte.stock < replenishmentileel)

criggeas Ri_StaticLink: All concepts of type composition
or association link are translated with aggregated

FigS: An example of the textual description of the attributes and cardinality constraints in the
oWt_$tock constraint part. In the case of a strongly

dependency, cardinalities must be defined in two
3.3- The Mapping rules between OOCPM classes, the caller and called. However, in the case
and target languages of a weak dependency, the cardinalities are

expressed only in the caller objects. Each
The second set of rules is used for the translation cardinality constraint is translated, into target
from an OOCPM specification, already language, within a specific method which verifies
established before, towards a target object- the minimal and maximal cardinalities (in the
oriented implementation. caller and the called)

RlClass: Each pivot class is translated into a For instance, the translation of the static aspect of
class within the target language. the pivot conceptual specification, given in Figure

9 and 10 , towards Eiffel and ONTOS/C++
RiAbstClass: Each pivot abstract class is programming environments is as follows:
translated into an abstract class or deferred class
(a class without instance variable in OOPL).

Class PERSON
RiInherit: The 'Inherits from' concept is Properties

translated into a classical inheritance into target Nss :siring(15)
Name: string(.10)

languages. To resolve the multiple inheritance Age: iO..W](0
conflict, REDEFINE and RENAME can be used in Addrss: AGGREGATE OF(nmon:ineger, street:
the target language. string(20). city: string(25). country: string (16))

Constraints

RiBasicDom: All, object-oriented programming UNIQUE (Nss)

languages support the <basic-domain> notion. Client n"Supplier = Person

END --- Person
RiCollectionDom: Each <collectiondomain> is Fig 9:An example of OOCPM textual specification
translated using the generic class COLLECTION
IX] or into a collection SET (X), where X is a type.

RiAggegateDom: Each <aggregate.domain> is
translated using an abstract class into target
language.

RiEnum-lntDom: Each <enumerated.domain>
or <interval -domain> is translated using the
method or routine into target language.

To control state transitions starting from the same
state and for the same event is by specifying a
precondition. It is possible that an object remains in
the same state as it was before. To avoid
redundancy, conditions are given as static
(attribute, state, occurrence, etc.) constraints if
possible, if it is not possible to specify constraints
for state transition as static constraints, a
precondition may be specified.

RiLStateTrans: All state concepts are translated
with enumerated attribute (called STATE) and

90

R.RiOperation: Each instance operation is
ONO CM o.m 1% IWkj• translated by a specific method into the target

Sa language. Pre and Post conditions are checked into

K,:MM Sm *NM the method body.
.STRMJ cbm .

Rnsm im W. rem I

d qa d o (AlmMsr - The meaning of the event concept is not the same in
a.-w .ww-avr, U UOGLEiNU -_te) different conceptual m6dels. This concept is

I VW' iffidwIW is coma particularly hard to implement in object oriented
rww_,&%-., m,,mb.-.12a) an languages, because of the functional principles of

M -M , the method calls [Kraiem92J. For instance, in 0, it
tmk, poses some problems such as:

I:(,mb) - the implementation of the internal event
at Fo S w G mechanism

ad; - the management of the dynamic transition
*, during the execution

c. .C: I0PW &Im - the saving of the event succession.SC ade x MAW amb!;

X.NU =M•_sin ow iSb&UOr I To resolve these problems, we propose a solution
ffl(€CuM) NM .

d=: based on two steps:
",tkMFMM j,- when event is activated, its operations are
"N"-'O " I triggered and its predicates - susceptible to be

chained - are tested

- then, each event having a true predicate is

* -e-m.mmactivated in sequence.

Fig 10: An craile of Onutos/e and Eiffel class To implement this mechanism, we use the

where Object is a predefined ONTOS class. Each following rules :

persistent object must be an instance of the Object RijnLEvent: An internal event is translated by a
class or its derived classes, private method for the object.

The inheritzince constraints are mapped in object-oriented programming using the following set of RiExtTemp_.Event: Each external or temporal
rilesn event is translated by an abstract class and amethod for its execution.

Ri_Inherlt..Disj: Each inheritance constraint such Ri-Event-Method: Every event method is
that S>ifc<S>k = 0. V i*k is translated by a imemente tine E ter get language.
classical inheritance into the target languages (all implemented by a routine in the target language.
classes are persistents). RiEvent_Pred: For every private event method, a

Ri_lnheriLCov: Each inheritance constraint such specific method (TESTPRED) is implemented in
order to test predicate. A Boolean parameter is

U• Sused when calling the method. When the call has
that <S>i-<G> is translated by a abstract a factor, we must keep the predicate value for each
superclass and the set of subclasses all persistents. affected object.

2"-0(+) persistent classes will be created. They
represent all possible intersections between the n
subclasses. To resolve the multiple inheritance
conflict, in the object-oriented language, these
classes will be virtual in the C++ languages.

Dynamic aspects of an object are operations and
events. Operations are represented by methods in
object-oriented programming. Operations may
retrieve, change, or delete values of attributes,
change the state of an object, set up or terminate a
relationships with other objects. The OOCPM
operation concept is mapped as follows:

91

PriO-fmc-BOOLEAN; spcfctorebd.Cmuiain ftequACMneols
sp Supplh 32. No. 5. 1989.
Omu1_Of..aoek (Pedmm..%.wock): BOOLEAN is

if (OLD~pqme.aock >ureplenislinwoj~evel) aad [BC92J BUSINESS CLASS project. 'Analyst Workbench
(NEW~qa_.uock < repleaishiniea lvel) Tutorial" Release 2, Deliverable BC.R.TS.T34, Business

then class ESPRIT 11 P 5311. 1992.
DrnaaiLOfjteplaasbnhe(Pred.Out-of...sbck);

0A. [Booch86J G.Booch. "Object-Oriented Development%, EEEE
Q--- bm PrductTrans. on S.E.. Vol. SE-12. N02, Feb. 1986.

ai Supplier (Booch87] G.Booch, Software Engineering wahk Ada, 2nd
capon Immand..Of-epleanishva *. Edition, Benjamin/Cummings Publishing Co., Menlo Park.

(court1987.

Deaimad.OLReplefisbnlea(Pred-Ou-o(-saock): BOOLEAN is
do fBooch9lJ. G.Booch. "Object Oriented Design With

- peation petfonnung tex Applications". Benjamin Cumming Ed., 1991.
end;

t-d- -- - dain Siq~pier But9]JBrnt .avtL.asodi ' yUFig 1): Ejiffel impleinentation of an pivot event. [Bue~JJ rnt .avt .Lsodi."h sing
Event in a Hignt Level Specification', in Proc. of the Entity

A detailed algorithm is presented in the / Relationship Conference. Lausanne. 1990.
[Kralem92,93J for *the mapping of events into (Brunet9lj J. Brunet, "Modeling the world with Semantic
programming languages. Objects", Working conference on the object oriented

approach in information systems. 1991.
4- Conclusion

(C'astellani93] X. Castellani. "MCO Mithodologie Gintral.
OOCPM solves some of the limitations of the d'analyse et de Conception des Systimes d'Objets, Tome 1:
existing'models. It is a generic conceptual model l'lnginieuric des besions" Edition Masson. Paris 1993.
combining together the static and dynamic aspects. lCauvct931. C'. Cauvet, F. Semak. D. Meddahi. J. Brunet.
Coupling this models with an object-oriented "MODWAY: Object-Oriented analysis method", Proc of
environments allows to extenuate some of their C'AiSEV3 Conf.. Paris 1993.
limitations.
We introduced rules that allow the formulation, at [Chen76]. P.P. Chen. "The entity relationshipmodel:
an in high of abstraction of program architecture towards a unified view of data", ACM TODS. vol. 1, nl,.
according to principles of object-oriented analysis, 1 9976.'
design and programming. [Coad & Yourdan9 I] E. Yourdon. P. Coad 'Object oriented
For our future works, we address the problem of analysis", second Edition. Yourdon press. 1991.
reusing generic pieces of the Requirements
Engineering Process which are called Process [Coad9OJ. Coad, P. and Yourdon. E. "Object-Oriented
Chunks . This notion will be introduced in our Analysis". Prentice-Hall. Englewood Cliffs, NJ. 1990.
framework.
A process chunck is a piece of generic knowledge (Cointeg?] P Comict. "Metaclasses are First Class: the
reusable for requirements engineering issues of the ObjVlisp Nlodcl".LITP. tiniversitd Paris VI ACM, OOPSLA,
same kind. It is in the form <situation, decision, 197

argument, action>. [DeAnionellisgl). J. DeAntonellis, B. Zonta, "Modelling
Events in Data Base Applications Design", Proc. of the 7th

Acknowledgments Int. Conf. on VLDB, Cannes. 1981.

jElma2sri9OJ. R. Elmasri, 1. EIAssal. V. Kouramajian,
We thank Professor Colette ROLLAND, Professor "Semantics of temporal data in an extended ER model". 9th
Faouzi BOUFARES for their helpful advise and remarks Int. Conf. on the Entity-Relationship Approach, Lausanne,
and their amiability. Switzerland. Oct. 1990.

[Heitzg9J M. Heimz "HOOD. une mdthode de conception
References hiirarchisge orientee objet pour Ie ddveloppement des groin

logiciels techniques et temps rdel". DMc. 1989. Journ~es Ada-
jBaelen92). S.V.Baelen. J.Lewi. E.Steegman5. H.Van Ridl. France.
"EROOS: an Entity-Realtionship base Object-Oriented
Specification Method%, TOOLS'?. 1992.

92

tHUedS-SelleWs 90] Henders-Sellers. B. and Edwards. JM.. [Sernadas89l. A. Sernadas. J. Fiadero. C. Sernadas, H1D.
""hw object-oriented systems life cycle" Communications of Ehrich. "The Basic Building Block Of Information Systems.
ate ACM. Vol.33.N9. 1990. Information Systems Concept". Noth Holland. Namur. 1989.

[Headers-Sellers 911. Henders-Sellcrs. B. "Analysis and [Shlaer&Mellor91] S. Shiner. S.J. Mellor.'Object
Design. Methodologies and Notation'% Tutorial. TOOLS. Lifecycles: Modelling the World in States", Prentice Hall.
Paris. 1991. 1991.

I1Iwangc9o. S. Hwang. S. Lee. "An Object-Oriented [Shlaer89]. Shlaer. S. and Mellor. SJ.. "An Object-Oriented
Approach to Modelling Realtionships and Constraints based Systems Analysis. Modeling the World in Data" Yourdon
on Abstraction Concept". Int. Conference of Database and Press. Prentice-Hall. Englewood Cliffd. New Jersey. 1988.
Expert Systems Applications. Vienna. Autsria. Aug. 1990.

[Smith89]. Smith. M.K. Hoza. B.J and Tockey. S.R. " An
livari9l]. Iivaru 3. "Object-Oriented Design of Information introduction to object-oriented analysis" in Proceedings of

Systems: The design process'. Proceedings of the Object- the Fifth Structured Techniques Association Conference.
Oriented Appoch in Information Systems Conference. Chicago. 1989.
Elasvier Science Publishers B. (North-Holland). 1991 IFIP.

[Teisseire9l1. M. Teisseire, P. Poncelet, A. Cavarero. S.
[Jungclaus91. R. Jungclaus. 0. Saake. T. Hartman. C. Miranda. "A-HOOK. The object-oriented analysis of the
Sernadas. "Object-Oriented Specification of Information HOOK system", report of External European Research
Systems: The TROLL Language%, Technische Ulniversitat Project. 1991.
Braunschweig, Dec. 1991.

IWegnerg9J Peter Wegner. "Concepts and Paradigms of
[Kralem92) N.KraTem. J.Brunet " Mapping of Conceptual Object-Oriented Programming."OOPSLA-89 Keynote Talk.
Specifications into Object-oriented Programs". SEKE'92. 1989.
Proceedings of the Fourth International Conference on
Software Engineering and Knowledge Engineering. IEEE. [Wirfs-Brock90J. Wirfs-Brock. R.. Wilkerson. B. and
Capri. June 1992. Wiener. L.. "Designing Object-Oriented Software" Prentice-

Hlall. Englewood Cliffs. NJ. 1990.
[Kralem93J. N. Kralem, F. Gargouri. F. Boufares. "From
Object-Oriented Design Towards Object-Oriented
Programming". Proc of CaiSE'93. Paris. 1993.

[Manfredi89], F. Manfredi. G. Orlando. P. Tortorici. "An
Object-Oriented Approach to the System Analysis". 2nd
European Software Engineering Conference. Springer-
Verlag. Sept. 1989.

JMeyer901 B. Meyer .'Conception el programmtion oricnt&e
objets". InterEdition. 1990.

[Monarchi92] D.E. Monarchi. G.I. Puhr " A research
typology for object-oriented analysis and design".
Communications of the ACM. September 1992. Vol 33. N*9

[Pernici9OJ. B. Pernici. 'Objects with Roles". ACM/IEEE
Conference on Office Information Systems. Boston. MA.
April 1990.

fRambaubg& a&91]. Rambauhg. J.. Blaha. M.. Premerlani.
W., Eddy, F. and Lorensen. W.."Object-Oriented Modeling
and Design" Prentice-Hall. Englewood Cliffs. NJ. 1991.

[Rolland82], C. Rolland. C. Richard. "The Remora
methodology for Information Systems Design and
Management'. IFIP TC8 Int. Conference on Comparative
Review of Information Systems DEsign Methodologies.n
North Holland. 1982.

[RollandS8J C. Rolland. 0. Foucaut. G. Benci. Concep:ion
de S>stnwes d'nfornation. La mifthode Remtora. Ed. Eyrolles.
Paris 1988.

[Seidewitz89], Seidewitz. E.. "General object-oriented
software development: Background and experience". The
Jouinal of Systems and Software, Vol.9. 1989.

93

The System Engineering
Technology Interface

Specification (SETIS):
An Update

1993 Complex Systems Engineering
Synthesis and Assessment

Technology Workshop (CSESAW '93)

"July 20-22, 1993
Washington D.C.

Baba Prasad, Moon Lee, Rajesh Puroshothaman, Evan Lock
Computer Command and Control Company

2300 Chestnut, Suite 230
Philadelphia, PA 19103

TeL: (215) 84--0555, Fax (215) 854-0665

94

The System Engineering Technology Interface Specification (SETIS): An Update

L Introduction

The Design Structuring and Allocation Optimization (DeStinAtiOn) project is a research ef-
fort sponsored by the Naval Surface Warfare Center (NSWC) that attempts to provide systems engi-
neers with various types of tools and techniques to perform design optimization and tradeoff analy-
sis [HoNHI], [NgHo]. A typical scenario that the DeStinAtiOn project hopes to address is that of a
systems engineer who wants to change nonfunctional requirements (referred to as System Design
Factors [SDF]) such as modifying a constraint in his design and observing how his changes affect
reliability. In other words, he wants to perform a tradeoff analysis between the system design factors
of performance and reliability [NgHo]. The DeStinAtiOn prototype attempts to arrive at a new
methodology in the area of design optimization and tradeoff analysis.

The project attempts to integrate a number of tools and techniques that will facilitate both the
design and tradeoff analysis aspects of systems engineering. This immediately necessitates the ex-
change of information between the different tools being employed. The Systems Engineering
Technology Interface Specification (SETIS) is an approach to facilitating information exchange
across various tools being employed in DeStinAtiOn in particular and systems engineering in gener-
al. SETIS attempts to incorporate similar information exchange standards that are evolving in the
CASE industry. The CASE Document Interchange Format (CDIF) is currently the leading standard
for the import and export of information between different CASE tools. CDIF is presently oriented
primarily toward software engineering. However, SETIS extends the technique to include enhance-
ments for systems engineering information. The intent is to maintain compliance with CDIE. This
document will provide an update on the current status of research on SETIS.

ML SETIS: An Overview

The primary goal of SETIS is to provide a standard for information exchange between vari-
ous tools employed in systems design capture, analysis, and simulation with design optimization
tools and techniques. The following components of systems design are examples of the tools and
techniques that interface through SETIS:

1. Front-end CASE tools for capturing analysis and design.

2. System behavior modeling tools for analysis and simulation.

3. Optimization algorithms such as scheduling, resource allocation and design
structuring.

The various information categories that SETIS covers is illustrated in the following figure:

95

Systems Engineering Technolpgy Interface Specification](SETIS-J

CONCEFU LGICAL WUPLE "APING
MODEL MODEL]MNAION MODEL

hjonmental Functional t w Conceptual TOOLW SYSTEM
"view View To Logical TECHNIQUE DESIGN

CHARACTER FACTORS

Information Behavioral HW Arct Logical To

view view tr Implemenw

Mapping

Human
Arc~hitetr

We will briefly describe the information categories and their implications. (For further in-
formation refer to an earlier paper, [LLPL]). The conceptual model captures parameters that arise
both from the operational environment and from information models [Kare, Hoan]. Through the
conceptual model, the systems engineer and the customer can arrive at an understanding of the sys-
tem being designed.

The logical model visualizes the system from the perspective of functional and behavioral
models without paying particular attention to the implementation methodology. This model thus
emphasizes what should be done by the system and not how it should be done. The implementation
model, on the other hand, specifically addresses the "how" part of the system. It envisages the vari-
ous hardware and software components that are required to provide the desired functionality of the.
system. The mapping model contains pairs that designate how objects are allocated within and across
models. Two mappings that are of particular interest to the research are the logical implementation
model mapping and the mapping of software onto hardware. Moreover, it also accounts for various
human factors that may affect the operation of the system. Objects within any of these models may
be attributed by System Design Factors.

96

As mentioned earlier, SETIS provides guidance and captures information on different types
of tools and technqiues. The Toollrechnique Characterization describes the software packages and
approaches available (both commerically and within the public domain) that may be applied for cap-
ture, analysis, simulation, optimization and assessment, as well as techniques that may be used in the
system life cycle, and alsojustifies their applicability based on the system requirements or specifica-
tions.

C++ has been used to describe class hierarchies within these models along with data struc-
tures and operations. As an example, operations include procedures for object creation and destruc-
tion and for reading and writing to an ASCII file on disk.

IlL Use of SETIS with FE-CASE Systens

Several Front-End Computer Aided Software Engineering (FE-CASE) tools are currently
popular in the real-time systems community. Cadre's Teamwork, IDE's Software through Pictures
(StP), and Mark V Systems' ObjectMaker are ready examples. The systems design engineer may
use these FE-CASE tools to specify portions of the system. In particular, the systems engineer fol-
lows a methodology and uses the icons that the FE-CASE graphics provide to indicate the various
components of the system and their interconnections.

To perform design optimization with DeStinAtiOn the information captured within the FE-
CASE tool must be imported into DeStinAtiOn. To accomplish this in a standard way for a diverse
set of tools and information, the transfer approach put forth by the Case Document Interchange For-
mat (CDEF) Committee has been used. A picture of the transformations necessary Lo import the FE-
CASE information into SETIS is shown in Figure 2.

97

GUI for
FE-Case Tool Specification of

Tcrampork) Hardware,
Architecture,

Constraints, and
CDIF Format System Design

Factors

CDIF Format

Ci rY
Meta-meta Model

i uI Meta Model]

I ModelJ

4i I ,

Figure 2. Design Capture Interface.

There is additional information required by optimization techniques beyond what is captured
within the FE-CASE tools. Namely, information regarding hardware architecture, consutaints (e.g.,
timing and placement) and Systems Design Factors (SDF). Remember that the SDFs capture the

98

nonfunctional requirements of a system and are the subject of tradeoff analysis. For demonstration
purposes we have constructed separate windows that are independent of the CASE system for enter-
ing this additional information. This is shown in the upper right of Figure 2.

SETIS must now integrate the FE-CASE dependent information and the GUI-based in-
formation into a tool independent data set that the simulation and optimization algorithms can use.
The FE-CASE dependent information can now be put out as a common FE-CASE independent.
SETIS will integrate the FE-CASE dependent information and the corresponding FE-CASE inde-
pendent system information into a single data set (currently envisaged as one file) that complies with
CDIF standards.

CDIF envisages the design as moving through several levels of abstraction. The Meta-Meta
Model specifies the system at the highest abstraction: there are Meta-Objects with Meta-Attributes
and Meta-Entities with Meta-Relationships. At the Meta-Model level, the Meta-Objects and their
attributes become more specific although the objects and relationships are still abstract. The system
components and their relationships become most clear at the Model level. This hierarchial abstrac-
tion is exemplified in the two figures (Figures 4 and 5) shown for the Software Structure. The Soft-
ware Structure is a component of the Implementation Model within SETIS which was shown in Fig-
ure 1 discussed earlier.

I

99

Now.:

I ---- Direction of relationship jMew Object

1:1 ~HasSource1:

Meta Relationship 01Meta Entities

1: 1 HasDestination 1:1

Hasdublype

Flgur &. Meta Meta Model

100

i -

1

CE

I- 0l

I U..,-

I i)•

S101

C6

10

000

C)
y)

idi

1021

The design is written out to afile in what is called a "Clear Text" format. This file, which is in
ASCII. can be read by any other tool that understands CDIF Clear Text. The model can thus be recon-
structed for the tool to operate on. Our current effort has been to construct the various CDIF models
for the Implementation Model that was shown in Figure 1.

We have been working on a C++ class library complete with data structures and operations
for the model thatis discussed in the next section. Users can add their own functions beyond the ones
available in the class library to perform optimization or simulation of the design.

uI. C-+ Class Design for the SETIS Implementation Model
The Implementation Model will be used as an example to illustrate the C++ class library de-

sign. In this model, the primary components are the Software Architecture, the Hardware Architec-
ture and the Mapping that relates these two structures (see Figure 1). Figures 6.7 and 8 show graphics
of the current C++ class libraries for each of these components.

Software is visualized as a set of interacting software modules. Each module comprises a
number of tasks or submodules. We structure the entire software architecture as a graph where each
node is either a module or a task, and each edge represents an interaction (data or control transfer)
between the nodes. The edges are further classified depending on whether they connect tasks in dif-
ferent modules or tasks in the same module, and also depending upon the direction of the interaction
(entry and exit). Each node and edge has a unique (name, id) pair that identifies the software struc-
ture. The "primitive" subclasses have been added to facilitate future additions.

The hardware structure is almost analogous to the software structure; here too, the hardware
configuration is visualized as a graph with each host being a node and physical communication links
between hosts being edges. The communication aspects of the link. however, neccesitate a slightly
different model. There are various communic ition subsystems that incorporate intelligent software
into their basic hardware to achieve some required functionality. Examples of these are intelligent
packet switchers, which are primarily communication oriented hardware devices, but also include
packet routing software. Such communication links have unique properties and require a special
class called intelligent links. All links can also be classified further depending upon whether they are
dedicated point-to-point communication paths between two hosts, or whether they can be used by
multiple hosts.

F'Rally, the mapping structure incorporates the various placement and time constraints and
also SDF constraints (e.g. reliability requirements, specified performance requirements, etc.) speci-
flied by the system designer, and arrives at a mapping view that determines which software should run
on which hardware and at what time.

These are only some of the factors that affected the design of the C++ class hierarchy for the
Implementation Model. Figures 6 and 7 provide the class structures in greater detail.

103

I

IJ ~I

1 I

___ __ __ I;
I

b 11

I
II~I

I

II
• ,-mI

1:31

105

RBPRBSUNT3IXON AND MEASUREMENT

106

The Representation of Resources for Large-Sized and Complex Systems

Nicholas Karangelen Ngocdung Hoang
John Intintolo Steve Howell

Trident Systems Incorporated Naval Surface Warfare Center Dahlgren Division

1. INTRODUCTION

The complexity and sheer magnitude of modem Intensive systems (including advanced
combat, sensors, and weapons systems) require a disciplined structured approach for development.
The principal objective of the system development process is to establish a design which satisfies
the system requirements and constraints while optimizing the key tradeoffs and Issues associated
with system functionality, behavior, and implementation. A multi-domain design capture and
analysis methodology' has been developed under the Office of Naval Research's Engineering of
Complex Systems (ECS) Technology Block which partitions the system design into five Design
Capture Views addressing the following principal design perspectives: (1) Environmental, (2)
Informational, (3) Functional, (4) Behavioral, and (5) Implementation. Of these five capture views,
the Implementation Capture View, which addresses the physical systems' architectures (including
hardware, software and humanware), is very crucial for the evaluation of the design and yet, is not
efficiently addressed by existing system design methods and tools.

An important aspect of the Implementation Capture View is the method for capturing
system resources. The ability to capture and analyze system resources early in the design process
supports the understanding of how resources are utilized, resulting in a major cost reduction in
system integration. The resource capture method needs a robust and flexible mechanism for
characterizing system resources including hardware, software, and human operators. The
mechanism must also allow the manipulation of system resources such that altemate designs can
be traded-off in achieving system requirements. The design of large-sized and complex system
requires the analysis of the logical (functional) as well as the physical (resource) aspect of the
design. Trade-offs should be performed at all necessary stages of the development process.
Hence, the ability to capture system resources at various levels of abstraction and in a systematic
and consistency manner is very important for system engineers. The capture of system resources
is not only used to search for an optimal design, but is also used to document the rationale of
design selections which will be very important when requirements are changed, added, or when
new technologies become available.

Although existing analysis tools (i.e., simulation, optimization) provide different mechanisms
to specify resources, the representation is very specific to the type of analysis that it supports.
The intention of this resource capture approach is to provide a baseline information of the system
resources that can be used by various types of analysis. This will minimize the number of
assumptions that were generated in the construction of analysis models and guarantee the
consistency of the analysis results. Objectives and requirements for an advanced complex system
resource modeling methodology and an object-oriented approach for implementing an advanced tool
for resource capture will be addressed in this paper.

2. RESOURCE CAPTURE METHODOLOGY OBJECTIVES AND REQUIREMENTS

This resource capture methodology is intended to support the characterization of complex
computer-based system resources across the broad spectrum of resource types and at various
levels of design detail. The spectrum of resource descriptions needed to capture the

107

I

Implementation of a complex system design at various points in the design process may vary from i
very specific to generic, from abstract to detailed, and from simple to complex.

In a top-down design process, the design implementation progresses over time, from high
level abstractions of system resources to increasing levels of detailed hardware, software and
human operator representations. Analysis and simulation of a particular design option may be
required at various points in the design process to address trade-offs or demonstrate compliance
with key system requirements. The resource capture methodology must therefore provide a robust
flexible method for representing resources of many different types and levels of abstraction.
Figure 1 depicts four levels of abstraction, from very highly aggregated resources down to the
resources at the sub-component level. (Four levels are picked for illustration purposes only; more
or less may be required to support the design capture and analysis needs of a given project.) Early
in a top-down design process, the system resources may be represented as large, highly
aggregated resources (e.g., subsystems) and the system under design is represented as a
combination of interconnected complex subsystems. These subsystem resources are decomposed
at the next level of design detail and are represented as aggregations of hardware and software
components. At the next level, components are individually represented, including software
configuration items with their associated mapping to tasks in real-time system execution and
hardware units with their associated lowest replaceable units (LRU's). Typically, the systems
engineering activities do not extend below this level of detail; however, this resource capture
methodology should support linkage with hardware and software engineering methods and tools to
provide support for the entire spectrum of the system development environment.

I, Highly aggregated resources
t of-Combinations of subsystems

Level Of System
Detail in Aggregated HW/SW/Humenware
Resource resources
Representation Subsystem -Cobintions of components

-HW units I replaceable itemsComponent - -CSCI I Tasks
-Individual operators

Sub-Component • -Pice-part MW devices
-CSC I SW units

Figure 1. Spectrum of Resource Description

The resource capture methodology must also provide a mechanism for managing complexity
in the characterization of resources at various levels of design detail. One or more sets of rules will
be established for linking resource representations at a higher level of abstraction to resource
representations at the next lower level of design detail. This capability will support decomposing
resource descriptions in a top down design scenario or recomposing them in a re-engineering or
bottom-up design scenario. When the transition from one to another level of abstraction is not
based on decomposition, the capability will provide consistency supports for the transformation.
Techniques must also be provided to manage multiple concurrent or alternate resource and design
options.

108

A potentially large number of possible resource types (including hardware, software, and
human operator categories) must be captured. A mechanism for efficiently representing a large
number of resource types must be provided as well as a flexible, robust approach to portray a
diverse spectrum of resource characteristics and attributes. This capability must be extensible to
Include new resource types as well as new characteristics of existing resource types. A
mechanism must also be provided for organizing, accessing and extracting resource descriptions.
This capability will establish a library for the captured resource descriptions and will provide an
interface to analysis, simulation, optimization, and other tools.

Additional requirements for the resource capture methodology include: (1) defining a formal
Uinkage/mapping with the other design capture views, (2) establishing common formats for resource
characterization information exchange, and (3) providing a mechanism for system requirements
traceability. The requirements described in this section establish a top level set of objectives for an
advanced resource capture methodology.

3. RESOURCE MODEL CONCEPT AND FEATURES

Successful employment of a resource capture and analysis methodology in supporting a
complex system design is largely a function of the degree of mechanization which can be achieved.
The size and complexity of large scale systems render manual application of any detailed resource
capture method unusable. Considerable potential benefits can be gained from a highly automated
design capture environment supporting a disciplined structured capture of resource descriptions
which'can be employed for design analysis, simulation, and optimization activities.

Recent advances in object oriented software engineering techniques provide a powerful
mechanism for implementing a tool for resource capture which embodies the requirements of the
previous section. Figure 2 illustrates the resource model implementation concept through an
Information Model.

FUNCTIONAL
ALLOCATION 11O9JUREhIENT

MAP 1TRACEABILITY

O~n
Is subdo of

Imi-'- Im i•'

Figure 2. Information Model of Resource Capture Concept

109

The shaded area is the essential information that will be captured in the resource capture
tool and will be addressed in the following sections. The captured system resource architectures
are used to evaluate the design in reference to different criteria which are dictated by or derived
from the requirements. In order for such analyses to be performed, additional information must be
represented and linked to the resource model. Other objects in this figure are examples of the
required information that will be used in conjunction with the resource model for the evaluation of
the design. J

3.1 Resource Component Type

A resource component type is a class structure of the kind of resource that can be used in
the system design process. Each resource type can be instantiated to a number of specific
resources that share some common properties. The resource component type Is characterized by
attributes and methods and is organized in a supertype/subtype" manner which leverage inheritance
and polymorphism -o efficiently represent a large number of resources.

Although this classification concept is straightforward, selecting the most efficient
classification is very challenging. The selection of resources can be motivated by its functionality
(i.e., operating system, beamforming, detection), by its character (i.e., hardware, software), or by
its domain specific (i.e., acoustic, electromagnetic environment). Whether a particular classification
tree of resource type can support all possible selections is questionable. The multiple inheritance
concept can be used to support the cross-reference representation of such structures; however, it
will complicate the tracing capability. Figure 3 shows an example of a hardware component type
that was selected for the design of a personal computer.

PC SiUM -- SbraI Sm 0

Figure 3. Example of Resource Component Type

110

I
I

3.2 Resource Component

A resource component is an instantiated representation of a resource component type,
with specific values for attributes, methods, and interfaces. Hence, a collection of compatible
resource components can be derived from an individual resource component type. The
representation of resource component can be very generic or very specific depending on how much
of its attributes, methods, and interfaces are indicated. The resource component structure can be
complex or simple depending on the available information. Hence, component level does not imply
that the resource is at its lowest level of decomposition.

3.3 System/Subsystem

A collection of resource components can be connected in a specific manner to form a
systemlsubsystem. Based on different connecting topologies, alternate designs of the same
system/subsystem can be derived from a single collection of resource components. The
connection and reconnection of system/subsystem resource structures must be generated rapidly
and effectively such that multiple evaluation can be performed to achieve an optimal design.

Once the resource components are aggregated into a systemlsubsystem, its characteristic
can be defined through a set of attributes, methods, and interfaces. Since system/subsystem
characteristics are not only defined by the combination of its components characteristic, simulation
or actual testing can be used to derive appropriated system/subsystem property.

3.4 Resource Library

The resource library is a repository for descriptions of instantiated resource components,
subsystems, and systems. It also is a place holder for the system resource information that will be
accessed by analysis tools to evaluate the design. Each element in the library includes an
excessive amount of information and has multiple related versions. Efficient tracing and version
controlling techniques must be incorporated in the management feature of the resource library.

4.0 CONCLUSION.

The resource capture tool concept, which includes a graphic interface supporting creation
and editing of resource types, instantiation of components, interconnection of components and
subsystems, and organization of components and subsystems into libraries, is very essential in the
development of large-sized and complex systems. A robust and flexible mechanism is required for
characterizing system resources including hardware, software, and human operators. This resource
characterization approach is used to support the optimization of the system design in achieving
competing system requirements such as performance, reliability, cost, and security. It also
provides a vehicle for the selection of hardware, software, and human operation as well as the
trade-off between alternate hardware architectures and software partitioning early in the design
process.

REFERENCES

1. Mission Critical System Develooment: Design Views and their Integration, N. Hoang, N.
Karangelen, and S. Howell, Technical Report, Naval Surface Warfare Center Dahlgren
Division, NSWCDD/TR91-586, Dahlgren, VA, Oct. 1991.

2. Shlaer, Sally and Mellor, Stephen, Obiect-Oriented Systems Analysis - Modeling the World
in Data Yourdon Press, Englewood Cliffs, NJ, 1988.

-11

A Software Metrics Integration Framework

Dr. William M. Evanco

The MITRE Corporation
Mail Stop Z38S

7525 Colshire Drive
McLean, Virginia 22101-3481

e-mail: evanco@mitre.org

Keywords: Software metrics, software quality, multivariate analysis,
prediction models, reliability modeling, maintenance modeling

Biographical Sketch: William M. Evanco received the B.S. degree in
physics from Carnegie-Mellon University, Pittsburgh, PA, and the Ph.D.
degree in theoretical physics from Cornell University, Ithaca, NY. He has
been with MITRE Corporation since 1987 and is currently associated with
the Space Systems Division in the Center for Civil Systems. His primary
research interests are software metrics and software performance modeling.

1122

1.0 Introduction

The production of high quality software systems (e.g., reliable, maintainable) is regarded
as an important *oal for software development organizations. Much effort has been
devoted to assessing these systems based on quantitative measures of quality. Various
metrics have been proposed to represent quality as well as the characteristics of both the
software product and the system development process contributing to quality. It may not
be possible to directly measure quality during the early phases of development. However,
the product and process characteristics which emerge during these phases can be used as
early indicators of quality.

It has been recognized in recent years that no single attribute of product or process can
adequately explain quality. Many features of product and process play a role in
determining quality. The challenge is to account for their impacts on quality outcomes in
some integrated fashion.

We describe a metrics integration framework which is capable of merging both product and
process oriented measures to arrive at a characterization of software quality. The
framework is extensible in terms of being able to incorporate new metrics as they become
available. In addition, it can accommodate a variety of development contexts (e.g.,
incremental builds, commercial off the shelf integration, reengineering) and programming
languages. Finally, the framework is adaptable in the sense of being able to incorporate
data collected by different software analyzers.

2.0 Framework Overview

The framework serves as the basis both for software metrics research and for the
application of the research results to assess software development projects.

The major elements of the metrics integration framework shown in Figure 1 involve data
collection and analysis, model building and validation, and application to new projects to
predict quality outcomes and prescribe system improvements. A database of projects is
maintained and continually updated to provide a foundation for ongoing analyses and
assessments.

Sdata -projects---

Figure 1: Overview of Integration Framework

113

I

Data collection and analysis serves two purposes. First, "historical" data is collected from
completed projects to populate a project database. This data is obtained from measurements
of software code through the use of software analyzers and from project records such as
problem tracking reports. Additional data is collected on the software development
environment. The building of the models and their validation depends on this historicaldata.II

Second, to make predictions for projects under development, data is collected during the
early development stages from software artifacts (such as designs). This data serves as
input to the models predicting software quality, for example, and for the prescription of
software improvements. As actual outcome data becomes available, it becomes part of the
"historical" project database. This data may be used for model validation and to identify
additional enhancements or improvements to the models.

The models thus far built predict the quality factors of reliability, maintainability, and
flexibility, as well as lines of code estimation be 1 on early design features [1,2,3,6,7).
The analytical techniques thus far employed to calibrate the models include multivariate
regression analysis and ordered response approaches. Also, proportional hazards models
have been identified for the analysis of time between failures data. In addition to predicting
development outcomes, the models can also be used prescriptively to examine tradeoffs
among various software artifact characteristics.

3.0 Data Collection and Analysis

The lack of reliable and appropriate data has been a major impediment in the development
of software metrics and their use in system development assessment. A systematic
approach is required to collect consistent and accurate data across development projects.

Details of a mechanism for data collection and analysis are shown in Figure 2. The
development of a system is conducted within the framework of a development
organization. Three types of data can be collected: software artifact data, software projectdata, and development environment data.

Development Environment Data

Software (e.g. requrements vdatility,
Devel opm ent reuse capabilities, process
Organization maturity)

-," Project data (e.g., faults,
softýe.re maintenance effort) ,I

Utilities Prq ect
SCode Software B•se

isofare n Ar tifact Anrlyzers

Figure 2: Data Collection and Analysis

114

3.1 Software Artifact Data

Software artifact data is available at different stages of the development process. The
artifact may be software code, for example. Or the artifact may be a software design
specified either by means of a design language, or through some Computer Aided Software
Engineering (CASE) tool which provides a representational capability for design
architecture. As will be discussed in further detail below, this raw data is fed into one or
m or software analyzers which extract artifact features such as module size, declaration
counts, and control flow information. Many of these features are related to the complexity
characteristics of the software artifacts, and are used in the derivation of complexity
metrics.

3.2 Software Project Data

The second type of data is that which generally cannot be collected from the analysis of
software artifacts. During the process of software development, data may be collected on
problems uncovered during testing, the effort to isolate or fix software faults, and the effort
required to enhance the software. Such data is increasingly available in electronic form,
and its extraction and analysis is amenable to automation.

Project data of this sort provides information on software development outcomes and is
used to derive quality metrics associated with the software. For example, problem tracking
reports collected during testing can be used to identify fault-prone modules or subsystems.
Similarly, effort data associated with maintenance activities may help to identify excessively
complex portions of the system which are difficult to maintain.

3.3 Development Environment Data

The last type of data characterizes the software development organization in which the
effort takes place. This data provides an indication of the organization's contribution to the
complexity of the development effort.

For example, an environment in which many requirements changes and additions are made
adds to the complexity of the development effort. These changes lead to unplanned
adjustments and modifications to the design or implementation. The details of these
changes and their impacts may not be well communicated within the organization, resulting
in fault propagation throughout the design or implementation.

As another example, a reuse policy in a development organization which encourages the
use of previously developed software artifacts in new projects and provides component
libraries for its accomplishment will reduce the complexity of its development efforts.

The quality of the software development staff as measured by experience or educational
levels and the turnover rates of project personnel are additional characteristics which can
influence the complexity of the development effort.

The level of integration of technology (such as CASE tools) and the use of rigorous
development methodologies (such as the clean room approach) may also influence the
development effort's complexity.

A mature development environment as measured by an organization's ability to treat the
software development process as a measurable and controllable activity may also affect the

115

complexity of the development effort. The Software Engineering Institute (SEI) has
developed a process maturity framework for the ranking of software development
organizations according to process maturity.

3.4 Data Analysis

Each of the three classes of raw data discussed above must be processed further to provide
appropriate metrics for the modeling effort.

Software analyzers reduce the detail of software artifacts to a manageable set of measures.
Either source code or program design language code is parsed and then input to a metrics
algorithm processor for further analysis. The types of analyses include:

" Dependency analyses to determine various kinds of intermodule dependencies

"* Complexity analyses to examine control flow and functional decomposition
complexity

"* Call graph analyses to determine how parts of a system use or are used by other
parts

"* Interface analyses to examine the passing of variables between different parts of
the program

"• ross-reference analyses to report on the usage of symbolic names

"* Standards checking to examine if specific project standards have been followed

Software analyzer outputs are not always in a form appropriate for building models and
using them for prediction purposes. The data must be expressed at appropriate levels of
software aggregation (e.g., modules, subsystems, configuration items) to facilitate the
analytical and evaluation objectives. One can imagine having to address questions about
software and its characteristics at both detailed and aggregated levels. For example, how
much testing effort should be allocated to a configuration item or subsystem? Or, given a
subsystem, which of its modules are expected to be more defect-prone?

To be used as input for analytical models, the software characteristics must be represented
by summary statistics. For example, a source lines of code count may represent the size or
magnitude of some level of software aggregation such as a subsystem. Similarly, the
number of calls by a subprogram to other subprograms could represent a measure of its
coupling complexity.

As with software artifact data, the project and development environment data must also be
expressed at appropriate levels of aggregation. For example, software fault data collected
from problem tracking reports may be rolled up to a subsystem or configuration item level.
Similarly, the number of software changes not related to fault correction may be aggregated
to obtain a development environment volatility measure at the project level.

Hybrid measures can be derived from the three categories of data discussed above. For
example, a fault density measure, defined as the number of faults divided by the number of
source lines of code, may be useful as a reliability related measure. Or the staff effort per
software change may be taken as a measure of maintainability.

116

This additional data analysis and reduction is accomplished by means of a set of utilities as
shown in Figure 2. The software artifact data generated by analyzers along with project
and development environment data are input to these utilities. The outputs are then stored
in the project data base.

If new metrics are developed or new data becomes available, these utilities, as a part of the
metrics integration framework, may be modified or augmented.

4.0 Model Building and Validation

System development can be viewed in economic terms as a production process. A result of
this process is a product, namely, a system of certain capabilities and characteristics created
by the application of resources. The characteristics of the system include, for example, the
size and complexity of the associated software, and quality aspects such as reliability and
maintainability. The resources involve labor to develop the system and capital such as
hardware resources to facilitate the development. These resources are brought together by
technologies consisting of software engineering methodologies and tools applied during the
deevelopment effort.

The project database, consisting of historical data on system and development environment
characteristics and development outcomes, is the foundation for model building and
validation. This data is used to calibrate multivariate statistical models. These models,
once calibrated, are validated on the basis of additional project data not used in their
calibration. This validation process provides a test of the assumption that the models are
applicable to a range of projects and environments different from the ones used for
calibration.

The kinds of models which are built are limited by the availability of appropriate data.
Typically, an outcome variable characterizes product or process attributes that might be
desirable to predict or control. There may be a need for the early identification of anoutcome important for the management of a system development project. For example, a

manager might want to determine the total effort required to develop a system early in the
development life cycle. Therefore, the outcome variable might be the staff years of effort
required to complete the project. To aid in estimating the effort, a model may be built to
relate effort to the estimated source lines of code to be built as well as other variables such
as the complexity of the proposed system. Effort models of this sort have been well
documented in the literature [4].

Our focus is on the prediction of software development outcomes related to quality--
namely, reliability, maintainability, and flexibility-and on the prediction of lines of code
based on software artifacts as they develop through the life cycle.

4.1 Types of Models

Several major categories of analytical models have been identified. The models allow us to
conduct multivariate analyses relating system and development environment characteristics
to development outcomes. They differ with regard to the level of data aggregation and in
terms of the development outcome under consideration.

4.1.1 Multivariate Linear Regression Models

Models of this kind are appropriate when the development outcome variable is either
continuous in nature or can be approximated by a continuum. For example, defect density
(defects divided by lines of code) is continuous. On the other hand, subsystem defects is

-17

discrete. However, at the subsystem level, the number of defects tends to be large and may
be approximated as a continuous variable. At the module level, such an approximation
would not be appropriate and the ordered response models described in the next section
would be used.

Multivariate linear regression models are expressed as linear combinations of parameters
which must be calibrated. Let Y be the outcome variable and XI, X2,...,Xm be the system
and development environment characteristic variables. The variable Y is a random variable
whose expected value is estimated by some function of the explanatory variables X I,
X2,...,Xm. We have used two forms of regression models: those linear in the variables and
those logarithmic in the variables. In either case, the equations are linear in the parameters.
They are expressed, respectively, as:

Y = ao + al*Xl + a2*X2 + ... + am*Xm + C (I)

In(Y) = ao + al*ln(Xl) + a2*ln(X2) + ... + am*ln(Xm) + E (2)

where ao, al,...,am are the parameters to be estimated, and E is a residual term accounting
for the discrepancy between the actual value of Y and its value as estimated by the
remaining terms on the right hand side.

To estimate the parameters, assumptions must be made about the probability distribution of
Y and, hence, of e- The probability distribution of e is usually assumed to be normal,
centered about the origin with standard deviation o. A normal E in equation (2) implies that
Y is log-normally distributed, assuring that neither Y nor e is ever negative. For either
equation (1) or (2), a least squares approach can be used to estimate the parameters.

Logarithmic forms as shown in equation (2) are useful in representing non-linear
relationships between the dependent and independent variables. The logarithmic form also
enforces positivity for the dependent variable if all the terms on the right-hand side are real.

Examples of multivariate linear regression analyses are given in [6] for subsystem level

defects and in [3] for subsystem level defect densities.

4.1.2 Ordered Response Models

The discreteness of defect measures becomes apparent when analyses are conducted at the
module level. The number of defects tends to be small and many modules may have no
defects at all. The discreteness and the skewness of the defect distribution toward zero
invalidates the normality assumptions associated with the least squares approaches
described above.

The number of defects can be viewed as categorical data. A module is classified as having
0, 1, 2, , n, or >n defects. Thus, the dependent variable is a discrete categorical
variable with n+2 categories. In this case, ordered response models, as discussed by
Gurland, et al. [8], can be used.

We hypothesize that the number of defects associated with a module is relatid to a single
measure characterizing its complexity. This complexity measure is a function of both the
system and development environment characteristics which are assumed to be of
logarithmic form:

3-1

ln(C*) - ao + al*ln(X1) + a2*ln(X2) + ... + am*ln(Xm) + E (3)

where £ is a normally disu-ibuted residual term. The logarithmic form assures that the
complexity is a positive quantity. The residual term in (3) incorporates all those
characteristic$ not taken into account in X1, X2, ... , Xm.

The composite complexity measure, C*, is not observed directly. However, the number
of defects is related to complexity, and it is these defects that are observed. The number of
defects changes as this measure crosses different thresholds. Expressed mathematically,

bi-I < In(C*) -- bi 0 (-1) defects if iffi,2,...,n+l (4)

= >n defects if i=n+2

where the bi represent the thresholds with bo = --0 and bn+2 = +0 and bi < bi+I for i=O,
... n+1.

Substituting equation (3) into equation (4) and rearranging provides constraints on the
residual, e:

bh-1 +A*ln(X) <E _ bi+A*ln(X) = (i-1) defects if i=l,2,...,n+l (5)

= >n defects if i=n+2

where the parameters and the variables are expressed as vectors, A = (ao aI a2 .. am) and
XT = (XI X2 ... Xm) where XT is the transpose of a column vector, X

Given a probability density function (PDF) for the residual, the probabilities of 0,1,...,n,
>n defects in a library unit can be calculated. The PDF is arbitrary relative to scale and
translation transformations, and may be chosen with unit standard deviation centered at the
origin It is denoted by the function PDF(u) with corresponding cumulative distribution
function, CDF(u).

For a residual, E, with a normally distributed probability distribution function (PDF), the
cumulative distribution frequency (CDF) is the error function denoted by erf(u). From
equation (5), the probability of zero defects is the integral of the PDF from -oo to
bl+A*ln(X). Similarly, the probability of one defect is the integral from bl+A*ln(X) and
b2+A*ln(X), and so forth.

Thus, the defect probabilities can be written as:

Prob(i defects) = erf(bi+l+A*ln(X)) - erf(bi+A*ln(X)) (6)

for i-0, 1, 2, ... , n+l (where iffn+l refers to >n defects).

Note that the probabilities given in (6) sum to unity. The expected number.of defects is
given by.

.19

n
E(defects)= iD*Pr(i) + E(>n defects)*Pr(n+l) (7)

ivio

where E(>n defects) is the mean number of defects for those library units with more than
n+l defects.

An example of the application of this approach is given in [6] for defect estimation models
and in [2] for maintainability models.

4.1.3 Proportional Hazard Models

The models discussed in the previous two subsections are appropriate for the estimation of
software defects or faults. In this section, we focus on reliability as measured by the time
between failures. Defects or faults are developer oriented measures, while failures are
customer oriented. The developer wants to know how many defects must be corrected.
The customer wants to know how long he might be able to use the system with failure-free
operation. A failure is the result of a fault encountered during system use.

The purpose of testing is to identify failures leading to the isolation and fixing of faults.
Also, during field operation, system ev ecution may lead to more failures and result in the
repair of additional faults. As faults continue to be repaired, and the system has fewer
remaining faults, we expect higher reliability as measured by failure-free operation over
longer and longer periods of tin. -

The hazard function (also cAlled the failure rate or force of mortality) for a system of
characteristics described by vector X and cumulative execution time Te for the last failure
occurrence is defined by

= f(t IX,Te) (
h(t IX,Te) fl-F(t IX,Te) (8)

where f(t IXTe) is the probability distribution of t, the time to the next failure, and
F(tlX,Te) is the corresponding cumulative distribution function. The characteristics, X,
may vary with execution time Te.

The hazard function represents the conditional probability rate of failure given that the
system has survived up to Te+t. Thus h(t IX,Te)*At is interpreted as the conditional
probability of failure in [Te+t, Te+t+At] given that the system has not failed in |Te, Te+t].

Reliability R(t IXTe) is defined as the probability of failure-free operation in the open
interval [Te,Te+t). It can be expressed in terms of the cumulative distribution function as

R(t IXTe) = 1 - F(t IXTe) (9)

Recognizing that the probability distribution function is the derivative of the cumulative
distribution function, substituting (9) into (8) and integrating, we can express the reliability
in terms of the hazard function as

R(t IXTe) = exp(- JT4f h(s IXTe)ds) (10)

1.20

Another measure of reliability, the mean time between failures (MTBF), can be expressed

as

MTBF(XTe) = S R(t IXTe)dt (11)To

In order to simplify statistical estimation, Cox [5] proposed a separable form for the hazard
function (8) given by

h(t IX.Te) - ho(t) exp(X03 + ag(Te)) (12)

where vector 10 and scalar ca are parameters to be estimated, g(Te) is some function of the
execution time, and ho(t) is the baseline hazard function.

Prentice, et al. [9] suggest a variation of equation (12) whereby the hazard function
depends on T=Te+t and can be written as

h(T IX) = ho(T) exp(X13) (13)

In order to estimate 13 and ho(t) from empirical data on failure rates, we could attempt to
maximize the likelihood function for the observed data simultaneously for a, 0 and ho(t) in
equation (12). But based on the separable form for the hazard function, Cox proposed an
approach for survival data [51 which was extended by Prentice, et al. [91 to repairable
systems. A partial likelihood technique was identified whereby the likelihood function for
the estimation for a and P3 in (12) does not depend on ho(t). Once 13 has been estimated,
ho(t) can be estimated in nonparametric form through another likelihood function.
Prentice, et al. [9] proposed a similar solution for hazard functions of the form (13).

The approach outlined above is powerful in that it makes no assumptions about the
probability distribution of the time between failures in (12) or the cumulative execution time
to failure in (13). It is a semi-nonparametric approach in that the reliability estimates
depend parametrically on the characteristics but nonparametrically on the time between
failures in (12) or the cumulative execution time to failure in (13).

5.0 Development Outcome Prediction

MWoels of the types described above can be used for predictive purposes on new projects
once they have been calibrated on the basis of previous project data. The new projects are
at a developmental stage where outcome data is not available, but software and
developmental characteristic data, X, are. For example, the complexity characteristics of
software begin to emerge during the design stage as the system architecture is developed.
A model that relates these complexity characteristics to quality outcomes such as defects can
be used to predict the cumulative defects at the end of the testing stage. However, care
must be taken when applying the model for predictive purposes. Not all of the variables
that could determine outcomes are incorporated in the model. For example, the quality of
the development staff may have been excluded as an explanatory variable_ If the staff
quality for the projects used to calibrate the model were substantially higher than that for the
project to be predicted, we might expect the defect predictions to be underestimated.

121

I
I

The lesson to be learned from the above is that models for prediction should not be applied
in a casual fashion. The user must have a strong understanding of:

"* the basis on which a model was derived
"• the range of variation of values of the explanatory variables
"* the potential explanatory variables excluded from the model
"* the potential impact of these excluded variables.

A large dose of judgment may sometimes be required to use a predictive model
intelligently. One may use a model to predict values for some outcome variable of interest. 1
Or the model may be used to rank order a collection of modules, for example, on the basis
of their defects.

The latter approach could be less stringent regarding the assumptions on which the model
is based. Suppose a model of the kind expressed by equation (2), for example, were used
to predict defect density. Calibrating the model on the basis of a set of projects developed
with relatively high quality staff would result in specific values of the parameters ao, al,
-., am. If a second set of projects involving low quality staff were pooled with the first set
and the model were recalibrated, we might have a model of the sort

ln(Y) = ao+bo*Ds + al*ln(XI) + a2*ln(X2) +... + am*ln(Xm) + E (14)

where Ds is a dummy variable equal to zero for the projects with high staff quality and
unity for the projects with low staff quality. Thus, the impact of staff quality is in the
difference of the constant terms for the two types of projects. High staff quality projects
have a constant term ao while the constant term for projects with low staff quality is ao+bo.
"A positive bo would yield a higher defect density for the projects with lower staff quality.
"A model of the form (14) is, in principle, empirically testable, as is the hypothesized sign
for bo.

Suppose staff quality enters as a dummy variable as in (14) or as an additional additive term
am+l*ln(Xm+l). If these terms were ignored and a model of the form (2) were calibrated
only on the basis of projects with high quality staff, then it would be possible only to rank-
order subsystems of new projects, for example, according to their relative defect densities.
To provide information about the atulI defect densities would require knowledge about bo
or aM+l. I
While the initially calibrated model may not provide information about either bo or am+l,
there are contexts in which this information can be obtained through analytical means. For
example, if a project is developed as a series of incremental builds, information about
defects, for example, associated with build N, can be used to provide an estimate of the
parameter, bo, and the resulting recalibrated model can be used to predict defects for
subsequent builds N+r where r>O.

6.0 Software Improvement Prescription

The previous section discussed the use of models to predict development outcomes. In this
section, we focus on the use of statistical models to prescribe changes for improving
system quality.

In Ada systems, context coupling of library unit aggregations (LUAs) is a contributor to
software complexity and, hence, to defect densities [1]. A LUA consists of a specification,

122

a body, and any related subunits. Context coupling of LUAs is achieved by the use of a

"with" clause and allows for the exportation andimportation of visible declarations among

LUAs. A LUA may use any of the imported declarations as resources in its
implementation.

The relationship between context coupling and defect density was found to be [3]

In(Defect Density) = .53 + .45*ln(Context Coupling) (15)

with a coefficient of determination, R2 , equal to .63.

Now consider a design with a context coupling profile as shown by the solid line in Figure
3. This figure represents the percent of LUAs having context coupling greater than a
certain value. For example, about twenty-seven percent of the LUAs have a context
coupling greater than fifteen and about seven percent of the LUAs have a context coupling
of forty-five or more. The mean context coupling of this design is 10.2 "withs" per library
unit aggregation. Using equation (15), the system has a predicted defect density of 4.81
defects per thousand lines of source code. A one million source line of code system would
contain 4810 defects.

A redesign of the system might consider those LUAs in the tail end of the profile. These
LUAs tend to be large and usually require extensive resources imported from other LUAs
through context coupling. A programmer responsible for implementing such LUAs is
confronted with a large number of declarations, including those defined within the LUA as
well as those which are imported through context coupling. The resulting complexity may
lead to larger defect densities in these LUAs.

100

S75

so

.2 50

15 30 45 60 75

Context Coupli ng

Figure 3: Context Coupling Profile

Dividing the large context coupling LUAs (>45 "withs") in the tail of Figure 3 into smaller
units reduces the context coupling profile to that shown by the dashed line. The redesigned
system has an average coupling of 7.1 "withs" per LUA. The predicted defect density is
then reduced to 4.08 defects per thousand lines of source code. Assuming that the
redesigned system has approximately one million source lines of code, the predicted

123

number of defects is 4080 for a net saving of 730 defects. The number of defects is thus
reduced by about fifteen percent.

This analysis can be extended to estimate the cost saving of the redesign. The cost saving
depends on the testing cost to uncover each of the 730 defects, the cost of isolating the
defect to a specific portion of code, the cost of fixing the defect, and the cost of additional
regression testing.

Another way of looking at the analysis leading to equation (15), which does not depend on
the constant term, is to take the differential of (15) yielding

ADD = .45*-C- (16)f D-7 cc
where DD refers to defect density and CC to context coupling.

This equation indicates that a ten percent change in the context coupling results in a 4.5
percent change in the defect density. Reducing context coupling from 10.2 to 7.1
represents about a thirty percent change. This leads to about a fifteen percent change in
defect density consistent with the an.'lysis above.

"The utility of equation (16) is that knowledge of the value of the constant term in equation
(15) is not required. Therefore, it may have greater applicability across proje1ts
substantially different from the ones used to estimate equation (15).

7.0 Conclusions

We have presented a framework for the development of software metric models and their
applications to the assessment of development projects. The framework is robust in that it
can incorporate a variety of software metrics and can accommodate different programming
languages and development contexts.

We have discussed several statistical analysis techniques which span different levels of
system aggregation and focus on different outcome variables. These techniques provide
the basis for building models to predict development outcomes and to prescribe system
changes that may improve development outcomes.

This framework is the foundation for continuing work to enhance the technology for

quantitative system evaluation and improvement.

REFERENCES

1. Agresti, W., W. Evanco, M. Smith (1990), "Early Experiences Building a Software
Quality Prediction Model," Proceedings of the Fifteenth Annual Software Enineerin,
Workshop NASA/GSFC.

2. Agresti, W. W., W. M. Evanco, D. D. Murphy, W. M. Thomas, B. T. Ulery (1991),
"An Approach to Software Quality Prediction from Ada Designs," Proceedings of the
Third Annual Software Quality Workshop, Rochester, NY.

3. Agresti, W. W., and W. M. Evanco (1992), "Projecting Software Defects from
Analyzing Ada Designs," IEEE Transactions on Software Engineering. Volume 18,
Number 11, pp. 988-997.

124

I

4 Bochm, B. W. (1981), Software Engineering Economics, Englewood Cliffs, NJ:
Prentice-HalL

5. Cox, D. R. (1975), "Partial Likelihood," Biomirika, Volume 62, pp. 269-276.

6. Evanco, W. M. and W.W. Agresti (1992), "Statistical Representation and Analyses of
Software," in Proceedings of the Seventeenth Symnosium on the Interface of
Computer Science and Statistics. College Station, TX.

7. Evanco, W. M. and W.W. Agresti (1993), "Software Defect Prediction," manuscript

submitted for publication.

8. Gurland, J., T. Lee, and P. Dahm (1960), "Polychotomous Quantal Response in
Biological Assay," D, Volume 16, pp. 382-398.

I9. Prentice, R. L., B. J. Williams, and A. V. Peterson (1981), "On the Regression
Analysis of Multivariate Failure Time Data," Biometrika, Volume 68, pp. 373-379.

I
I
I
I

I
I
p

125

MEASUREMENT AND EVALUATION OF COMPLEX NAVY SYSTEM DESIGNS

Osman Bald
David DeVaux

Richard L Nane

Department of Computer Scienceand
Systems Research Center

Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061-0106

ABSTRACT concepts of measurement and the tenni y. The
proposed aproch based on the use of simulation mod-

The purpose of this paper is to present a mul- eling, indicators (metrics), and the OPA framework is
tifaceted approach to the measurement and evaluation described in Section 3. After concluding remarks in
of complex Navy system designs with embedded real- Section 4, a bibliography is given.
time mission critical characteristics. The apprach ad-
vocates the use of a visual simulation model, con- 2. THE MEASUREMENT SCHEME
structed in the Visual Simulation Support Environment
(VSSE), repesenting the design so as to achieve dy- Measurement is an important activity of interest in
namic measurement of the design. A knowledge-based many disciplines. However, a standard terminology
approach is proposed for the independent evaluation of does not exist. Different terms are used in different dis-
hundreds of design indicators. The Objectives / Prin. ciplines to convey the same notion. The term "metric"
Ciples / Attributes (OPA) framework is used as the un- is used in Software Engineering in measurement of sft-
denying structure for the measurement and evaluation ware quality characteristi and software project, pro-
of all three major aspects of a system design: project, cess, and products. The terms "Measure" and "Index"
process, and product. are used in Computer PNformance Evaluation in meas-

urement of different aspects of a computer system. The
L INTRODUCTION terms "Scale" and "Factor" awe used in statistical meas-

urement. The term "Indicator" is used in Economics
A complex Navy system is composed of three ma- for measurement of the economy (e.g., leading econom-

pt components: software, hardware, and "humanware". ic indicators) and in Pschometric Theory in measure-
These components are intertwined with real-time mis- ment of psychological problems.
sion critical characteristics and pose significant tech- The common goal in all these disciplines is to try
nical challenges for system designers, developers, and to accurately measure a concept which can be either
maintainers independent of warfare area, quantitative or qualitative. Measurement of quan-

A critically important phase in the engineering of titative concepts (e.g., response time, throughput, util-
complex systems methodology is system design meas- ization) can be done directly. Whereas, qualitative con-
urement and evaluation. Before making the commit- cepts (e.g., design utility, mauntaiability, complexity)
ment to spend millions of dollars for building a system, must be measured indirectly by using a hierarchy of in-
its design must be carefully evaluated. dicators as shown in Figure 1.

The purpose of this paper is to present an ap- In this paper, we use the term "indicator" and de-
poach for measurement and evaluation of complex fine it as an indirect measure of a qualitative concept.
Navy system designs. Section 2 describes some basic We define the term "metic" as an indicator the value of

126

Indicator 1.1i

Indicator Indicator 1.2

Indicator 1.K

CONCEIndicator

Indicator N.1N

Indicator N.2 _<"Indicator

N.JII

Figure L Measurement of Qualitative Concepts

which can be computed by using a formula. A lit- 3. THE PROPOSED APPROACH
erature survey reveals three categories of indicators: (1)
process indicators (e.g., stadards, design meth- Measurement and evaluation of a complex Navy
odology), (2) product indicators (e.g., execution ef- system design represented in a static manner (on paper)
ficiency, reliability, usability), and (3) external in- cannot be made convincingly. The system being repre-
dicators (e.g., security, physical, financial), sented is typically embedded within a larger system.

A qualitative concept (e.g., system design utility) Performance parameters are carefully defined, de-
is measured by N indicators at the first level. Those in- pendent on an equally careful assessment of mission re-
dicators which cannot be directly measured are further quirtments. Introducing even greater challenge is the
decomposed into other indicators at the second level, real-time or time-citical dimension of system behavior.
This decomposition continues until the indicators at the Therefore, the system design must be represented in a
base level (ie., the ones that are not decomposed fur- dynamic fashion so that its measurement and evaluation
ther) at directly measurable. Figure 2 presents a bier- can capture all of its dynamic characteristics. We pro-
archy of indicatms for measurement of system design pose to reprent a complex Navy system design in the
utility. Note that the decomposition of indicators in form of a visual simulation model and experiment with
Figmre 2 is not carried completely, and many indicators it for the purpose of measurement and evaluation of the
shown at the base level are not directly measureable. system design as illustrated in Figure 3. However, we

Measurement of a concept using indicators carries realize that the development of a visual simulation mod-
some error el of a complex system design is very complex and dif-

CONCEPT INDICATORS + ERROR ficult itself. Therefore, we propose to use the Visual
Simulation Support Environment (which can also be

Validation and verification of indicators deal with c'.racteied as computer-aided visual simulation soft-
determining the amount of error in the measurement ware development environment) a fully functional pro-
process nd require collection of data fom the applica- totype of which has been constrted at Virginia Tech.
tion of the indicators to a large number of cases. This The simulation environment is briefly dcribed in Sec-
data collection is extremely time consuming and very tion 3.1.
expensive in many cases. The measurement of a complex Navy system

127

System Deinp Utility Whitworth & Szulewski control flow complexity
Performance Whitworth & Szulewski data flow complexity

Response Time McClure's Module Invocation Complexity
Ef ficiency Woodfield's Review Metric

Device efficiency Woodwind's K
Accessibility Chen's MIN
Conciseness Benyon-Tinker's Cx

Predictability Intensity of program use
hout Program Age

7r-vneMaintainability,
ReliailityCorrectibility

N~~ Mean Time to Failure Extensibility
MTBF - Mean Tune Between Failures Complexityt
Accuracy Adaptability

Informal Testn Information hiding
Desk Chekn Coupling
Stuctuared Wakthi ughs Cohesion

6inspecton Well-Defined Interface
Riws Modularity

Audit Conectivity
Static Testing Functional connectivity

Strctural Analysis Data connectivity
Consistency Checking Stability

Dynamic Testing Yau & Collofello stablity metric
Top-Down Testing Requirements Stability
Bonom-Up Testing Cost
Black-Box Testing Development Cost
White-Box Testing COCOMO
Stress Testing Sizet
Execution Monitoring Complexityt
Execution Profiling SLIM
Rewession Testing ESTIMACS

Symbolic Testing Testing Cost
Path Analsi Maintenance Costs
Cause-Effect Graphing Operation Costs

Constraint Testing Productivity
Assertion Testing Source lines of code per work month
Boundary Analysis Dollars expended per line of source code
Inductive Assertions Purchase Costs

Fault Tolerance Personnel Costs
Graceful Degradation Cost of implementing security barriers
Redundancy tialcost
Crash Recoverability Analysis of security requirements

MTTR - Mean Time to Repair Implelementation
Availability Valdatin and testing
Computation Heavy Process (Stress) Effects Operational cost
Complexity Extra CPU time required for logging

Size Encipherment time coefficient
Halstead's program length Maintenance of authorization matrix

nl Restriction of previously offered services
n2 Security

Jensen's program length Expected time to break password(s)
nl Size of the authorization matrix
n2 Depth of the authority levels

Function Points Quality of the introduced cryptography system
McCabe's cyclomatic number Usability
Henry/Kafura information flow metric User intensity
IF4 information flow metric Required number of operators
Belady's bandwidth Number of simultaneous users
System complexity Ease of use

Data complexity (D) User response time
Structural complexity (S) Completeness

Procedural complexity Communicativeness
Functional complexity Training

"" See the decomposition of this indicator given earlier in the hierarchy.

Figure 2. A Hierarchy of Some Indicators for System Design Measurement

128

User inteface Testablit
Hierarchial
Length of mnemonics (cammands) Functional
#of mnmoi beginning with same character lnformation WHdin• t
Respne time Exhaautivity of tst dam
Aver # choices in mome Modularity•
Avg. of menu in one procedure sequence Adverse testing effects
Good or bed graph representations C "Mp eHzt
Good orbed cur messages Understandabity
Number of err messages Number o fuion

Inataft Amount of dat pmocs
"# of Down orlay Information hidrigt

Reuseabilky ModularilY
Information r2AHi e h CoS emDess
ilerarchinldcomorsith n brov i remen t Traceabiity
Functional itin Requirements Definition
Moduarity Compleeness
Porftablity Consistency
Complexutyt

t See the decomposition of this indicator given earlier in the hierarchy.

Figure 2. A Hierarchy of Some Indicato for System Design Measurement (Continued)

design involves indicators that can be assessed only by provided in the form of an environment composed of
experts with intimate knowledge of the mission aas integrated software tools providing comnputer-aided
for which the system is intended. Therefore, we pro- assistance in the develpment and executio of a visual
pose to use a knowledge-based approach as described in simulation model.
Section 32. A collection of computer-based tools makes up a

We envision the use of hundreds of indicators for development environment if, and only if, the tols are
the measurement and evaluation of a complex Navy highly integrated and work under a unifying Conceptual
system design. Some of these indicators can be meas- Framework (CF). The Simulation Model Development
ured by system engineers, some (especially those in- Environment (SMDE) research project [Balci 1986;
dicators for dynamic system characteristics) can be Balci and Nance 1987a, 1992] at Virginia Tech has
measured by using the visual simulation model repre- recently achieved the automation-based software par-
senting the system design, and some can be measured adigm [Balci and Nance 1987b] and developed: (1) the
by only the warfare domain experts. multifaceteD cOnceptual fraMework for visual simula-

All these indicators need to be applied under a doN mOdeling (DOMINO) Derrick 1992; Derrick and
framework in order for the measurement to be effective. Balci 1992a], (2) the Visual Simulation Support En-
The needed framework is the Objectives/Princples vironment (VSSE) [Derrick 1992; Derick and Bala
Attributes (OPA) framework developed at Virginia 1992b], and (3) the Visual Simulation Model Specifica-
Tech and is briefly described in Section 3.3. tion Language (VSMSL) Derrick 1992; Derrick and

Balci 1992c].
3.1 The Visual Simulation Support Environment The rapid prototyping technique has been used in

the VSSE's evolutionary joint development with the
The ever-increasing complexity of visual simula- DOMINO. Many VSSE tool praotypes have been de-

tion model development is undeniable. A simulation veloped. implemented, experimented with, and doc-
programming language supports only the programming umented. Some prottypes have been discarded; how-
process-one of 10 processes in the life cycle of a sim- ever, the experience and knowledge pined through
ulation study [Bali 1990]. Automated support expaimenation with those prototypes have been kepL
throughout the entire visual simulation model develop- Figure 4 depicts the VSSE architecture in four
ment life cycle is crucially needed. This support can be layers: (0) Hardware and Operating System, (1) Kernel

129

I

•\ I

ISimulation Model of aI
forStaicComplex Navy System Design9

for Saticand Dynamic Measurement and Evaluation

ooo

,< GO

NI

a • 17, <

A VISUAL SIMULATION MODEL OF A COMPLEX NAVY SYSTEM DESIGN

Visual Simulation Support Environment (VSSE)

Figure 3. Simulation Model-Based Evaluation of Complex Navy System Designs Using Indicators

130

F~~~gure 4. ~~~~~VisualSuainSpotEvrmntrcteue

VSS, 2) inmalVSe, andr (3)ne VSWs .12 ae r :kre lSmdto upr

3.11 Ass 0 Hist andcOeatn System r an SYMOM

ofanagSE Ter Opertin SSystertim ys

INRE rltisM anager emn system n I occupy th s l y serl mldpoeceoes

ManagernlaEdtr2AUV Etosar quedt

Minima V131

munication between two tools is prevented to make die or additional tools may be needed to meet special me-
VSSE easy to maintain and expand. The kernel inter- quirements. The second category tools (also called as-
face provides a standard communicatim protocol and a sumed tools or library tools) are those anticipad as
uniform set of interface definitions. Protection is im- available due to use in several other mas of applica.
posed by the kernel interface to prevent any un- tion: statistical analysis of simulation output data, de-
authorized use of tools or data. signing simulation experimens, documentation and

credibility assessment, ad input data modelig. Some
313 Layer 2: Mienial Visw Simuko Support exanples of such tools comprise layer 3.

E~nvi roment
A VSSE tool at layer 3 is integrated with other

VSSE tools and with the software environment of layerThis layer provides a "comprehensive" set of tools 0 twoug• thne kernel intefc. The provision for this

which are "minimal" for the development and execu- 0nteron is knel ated in Figue prbyithenopening

tion of a visual simulation model "Comprehensive integration is indicated in Figure 4 by the opening

implies that the toolset is supportive of all model de- between Project Manager and Text Editor. A new tool

velopment phases. processes, and credibility assessment can easily be added to the toolset by making the tool
conform to the communication pr~xotoi of the kernel

stages. "Minimal" implies that the toolset is basic and
general. It is basic in the sense that this set of tools en- interface.

ables modelers to work within the bounds of the mini- The VSSE was developed by using the C pro-

mal VSSE without significant inconvenience. Gener- gramming language, SunView graphical user interface,

ality is claimed in the sense that the toolset is Sun programming environment, and INGRES relational

generically applicable to various simulation modeling database management system Erbedded QU try Lan-
tasks. guage/C (EQUELX). It encompasses more than

Minimal VSSE tools are classified into two cat- 50,000 lines of documented code and runs on a Sun col-

egories. The first category contains tools specific to or workstation.

simulation modeling: Project Manager, Premodels Man- Currently, we are building the production version

ager. Assistance Manager, Model Generator, Model of the VSSE under the NeXTstep object-oriented dis-

Analyzer, Model Translator, Model Verifier, and Visual play postscript-based Operating System.

Simulator. The second category tools (also called as- .2 The Knowledge-Based Evaluation
sumed tools or libary tools) are expected to be pro-
vided by the software environment of Layer 0 Elec-nonic Mail System, Document Preparation System, and The overall evaluation of a complex Navy system

t Editor design must be conducted independently. The organi-Text Editor.
zation which creates the system design is not qualified

3.1.4 Layer 3: Visual Simulation Support to also perform its final overall evaluation because of
Environments the "developer's bias". We envision the scenario

illustrated in Figure 5 in which an independent or-
This is the highest layer of the environment, ex- ganization is charged with the task of measurement and

panding on a defined minimal VSSE. In addition to the evaluation of the system design. This organization can
toolset of the minimal VSSE, it incorporates tools that be independent to the sponsoring and developing or-
support specific applications and are needed either ganizations or it can be a branch within the sponsoring
within a particular project or by an individual modeler. organization.
If no other tools are added to a minimal toolset, a mini- Based on the warfare domain the system design is
meal VSSE would be a VSSE. intended for, hundreds of indicators should be identified

The VSSE tools at layer 3 are also classified into for measurement and evaluation. Some of these in-
two categories. The first category tools include those dicators can be measured by the use of a simulation
specific to a particular area of application. These tools model representing the system design, some can be

might require further customizing for a specific pi-oject, computed by using a formula, and some need to be

132

Sponsoring Organization Organization Designing the Navy System

Independent Organization Responsible for the
Evaluation of the Navy System Design

Problem Domain Specific Knowledge About the Relationships,
Indicators Dependencies Among the Indicators

Experts

Indicators
Data Base Knowledge About the

Problem Domain

Knowledge 4
Base

Figure 5. Knowledge-Based Evaluation of Complex Navy System Designs Using Indicatos

133

assessed by expert people who have intimate knowl- significant technical challenges for system designers,
edge of the warfare domain, developers, and mainainers independent of warfare

The assessment of indicators requires knowledge area. A credible approach to the assessment of such a
about dte problem domain and knowledge about the re- complex system must include at least the following ele-
lationships and dependencies among the indicators. ments: (1) a simulation model built to represent the sys-
These types of knowledge ae essential for scoring on tern design so dth dynamic measurement can be done;
the indicators. (2) identification of hundreds of qualitative and quan-

Thus, the evaluation process using hundreds of in- titative indicators to measure software, hardware, and
dicators and the knowledge base becomes a very com- "humanware" components of the system design; (3) a
plex process requiring computer-aided assistance. Such knowledge-based system that provides computer-aided
assistance is being provided in a software tool called assistance in the evaluation process; (4) conducting the
SENATE which is under development, evaluation in an independent fashion, preferably by a

Figure 6 shows the SENATE tool browser con- third party; and (5) identifying experts to evaluate some
taining the hierarchy of indicators presented in Figure of the indicators based on their expert knowledge.
2. The SENATE allows the user to create, modify, de-
lete, weight, and score on the indicators. An expert sys- ACKNOWLEDGEMENTS
tem shell under development will enable the system ad-
ministrators to store rule-based knowledge into the This research was sponsored in part by the U.S.
inference engine of the SENATE. The knowledge is Navy under contract N60921-89D-A239 through the
used in the background during weighting and scoring Systems Research Center at VPI&SU. The authors
on the indicators. acknowledge stimulating discussions with James D.

Arthur which contributed to the research described

3.3 The OPA Framework herein.

The ObjectivesPrinciples/Attributes (OPA) BIBLIOGRAPHY
framework [Arthur and Nance 1987, 1990. Arthur et al.
1993; Nance and Arthur 19881 characterizes the raision Ackerman, A.F., LS. Buchwald and F.H. Lewski

if etre for software engineering and establishes de- (1989), "Software Inspections: An Effective Ver-
innscation Process," IEEE Software 6, 3 (May), 31-

fmitive linkages among project level objectives, soft- 36.
ware engineering principles, and desirable product at- Agresti, W.W. and W.M. Evanco (1992), "Projecting
tributes as illustrated in Figure 7. Software Defects from Analyzing Ada Designs,"

IEEE Transactions on Software Engineering 18,
The OPA framework is applied in the organization 11 (Nov.), 988-997.

and application of indicators throughout the system en- Andersen, 0. (1990), "Use of Software Engineering
gineering life cycle. It is essential that we not only Data in Support of Project Management," Soft-
measure and evaluate the system desin, but also the wware Engineering Journal 5,6 (Nov.), 350-356.

Anderson, G.E. (1984), "The Coordinated use of Five
process by which the design is created under project Performance Evaluation Methodologies," Corn-
level objectives. The OPA framework provides a corn- munications of the ACM 27.2 (Feb.), 119-133.
prehensive view covering project, process, and product Arthur, J.D. and RE. Nance (1987), "Developing an
measurement and evaluation. Automated Procedure for Evaluating Software

Development Methodologies and Associated
Products," Technical Report SRC-87-007, Sys-

4. CONCLUDING REMARKS tems Research Center, Virginia Tech, Blacksburg,
VA.

Arthur, J.D. and R.E. Nance (1990), "A Framework for
The Navy systems are indeed very complex and Assessing the Adequacy and- Effectiveness of

contain three diverse components: software, hardware, Software Development Methodologies," In Pro-
and '"umanware". These components are intertwined ceedings of the Fifteenth Annual Software En-

with real-time mission critical characteristics and pose gineering Workshop, Greenbelt, MD.

1-34

135

Msintaina~b'iit ODJEC'flVES " PROJCT
Corrctes
Reusability 0 0
Testability
Reliogt

POrtabilitj

PRINC1PLES

Hfierarchical Decomposition PROCESS
Fumctional Decomposition
Information Hfiding
Stepwise Refinement
Structured Programming
Life-Cycle Verification

Cocrint Docmetation

PRODUCT '
ATTRIBUTES

Redued oupingDOCUMENTATION ()PROGRAMS

Enhanced Cobesion
Reduced Complexity
Well-Defined InterfacesPrptisroeis

ReadabilityP - II
Ease of Change AIIUE

Visibility of Behavior
Early Error Detection _________________

Figur 7. Illustration of the Relationship Among Objectives, Principles, Attributes
in the Software Development Process

Aith=, J.D. and RJE. Nance, and 0. Baldi (1993), "Es- BaLci 0. (1990), "Guidelines for Successful Simulation
tablishiig. Software Development Process Con- Studies,7 In Proceedings of the 1990 Winter Sim-
trol: Technical Objectives, Operational Require- uladon Conference, 0. Bald R.P. Sadowaki, and
muents, and the Foundational Framework," The RE. Nance, Eds. IEEEF, Piscataway, NJ, pp. 25-
Journal of Systems and Software, to appear. 32.

Bacie, R. and R. Tinker (1988), "A Rigorous Approach Balci, 0. and RY. Nance (1987a), "Simulation Model
to Metrification: A Field Trial Using Kinda, In Development Environments: A Research Proto-
Software Enginaeering 88 Second IEE/BCS Con- tyeW journal of the Operational Research So-
ference (Liverpool, England, July 11-15), lEE, ciety 38, 8 (Aug.), 753-763.
London, England, pp. 28-32. Balci, 0. and RE. Nance (1987b), "Simulation Sup-

Bald. 0. (1986). "Requirements for Model Develop- port~ Prototyping the Automnation-Based Par-I
muent Environtments," Computers & Operations adigin," In Proceedings of the 1987 Winter Sim-
Research 13, 1 (Jan.-Feb.), 53-67. ulation Conference, A. Thesen, H. Girant, and

W.D. Kelton, Eds. IMEE, Piscataway, NJ, pp. 495-

136

Bald, 0. and R.E. Nance (1992), "'The Simulation Clapp, J. (1993), "Getting Started on Software Met-
Model Development Environment An Over- rics," IEEE Software 10, 1 (Jan.), 108-110.
view," In Proceedings of the 1992 Winter Simula- Conte, S.D., H.E. Dunsmore, and V.Y. Shen (1986),
don Conference (Arlington, VA, Dec. 13-16). Software Engineering Metrics and Models, Een-
IEEE, Piscataway, NJ, pp. 726-736. jamin Cummings Publishing. Menlo Park, CA.

Barshefsky, A. and J.L. Carter (1984), "Application of Derrick, EJ. (1992), "A Visual Simulation Support En-
Software Metrics to Autoplex Cellular Develop- vironment Based on a Multifaceted Conceptual
ment," In Confernence Record of IEEE Global Tel- Framework," Ph.D. Dissertation, Department of
ecommunications Conference, GLOBECOM '84: Computer Science, VPI&SU, Blacksburg, VA,
Communications in the Information Age (Atlanta, Apr.
Georgia. Nov. 26-29), IEEE, Piscataway, New Derrick, E.J. and 0. Balci (1992a), "DOMINO: A Mul-
Jersey, pp. 1295-1298. tifaceted Conceptual Framework for Visual Sim-

Basili, VJR. and EE. Katz (1983), "Metrics of Interest ulation Modeling," Technical Report TR-92-43,
in an ADA Development," In IEEE Computer So- Department of Computer Science, VPI&SU,
ciety Workshop on Software Engineering Tech- Blacksburg, VA, Aug.
nology Transfer (Miami Beach, Florida, April 25- Derrick, EJ. and 0. Balci (1992b), "A Visual Simula-
27), IEEE, Piscataway. NJ, pp. 22-29. tion Support Environment Based on the DOMINO

Basili, V.R. and R.W. Selby (1985), "Calculation and Conceptual Framework," Technical Report
Use if an Environment's Characteqistic Software TR-92-44, Department of Computer Science,
Metric Set," In Proceedings of Eighth Inter- VPI&SU, Blacksburg, VA, Aug.
national Conference on Software Engineering Derrick, EJ. and 0. Balci (1992c), "A Visual Simula-
(London, England, August 28-30), IEEE, Piscat- tion Model Specification Language," (in prepara-
away, New Jersey, pp. 386-391. tion).

Beane, J, N. Giddings and J. Silverman (1984), "Quan- Deutsch, M.S. (1988), "Focusing Real-Time Systems
tifying Software Designs," In Proceedings - Sev- Analysis on User Operations," IEEE Software 5, 5
enth International Conference on Software En- (Sept.), 39-50.
gineering (Orlando, Fla, March 26-29), IEEE, Emerson, TJ. (1984), "A Discriminant Metric for Mod-
Piscataway, NJ, pp. 314-322. ule Cohesion," In Proceedings - Seventh In-

Boeuhm, B.W. and P.N. Papaccio (1988), "Under- tenational Conference on Software Engineering
standing and Controlling Software Costs," IEEE (Orlando, Pa, March 26-29), IEEE, Piscataway,
Transactions on Software Engineering 14, 10 NJ, pp. 294-303.
(Oct.), 1462-1477. Emery, K.D. and B.K. Mitchell (1989). "Multi-level

Booth, T.L. and B. Quin (1987), "Use of Performance Software Testing Based on Cyclomatic Complex-
to Guide Software Designs," In Second Inter- ity," In Proceedings of the IEEE 1989 National
national Conference on Computers and Applica- Aerospace and Electronics Conference - NAE-
tions (Beijing, China, June 23-27), IEEE, Piscat- CON 1989 (Dayton, Ohio, May 22-26),, Piscat-
away, NJ, pp. 305-311. away, NJ, pp. 500-507.

Bryan, W.L. and S.G. Siegel (1984), "Product As- Far, W.H. and A. Ashton (1992), "Developing a Met-
surance: Insurance Against a Software Disaster," rics Assessment Program for the SLBM Soft--',re
Computer 17,4 (Apr.), 75-83. Development Division," In Proceedings of the

Buckley, FJ. (1989), "Standard Set of Useful Software 1992 Complex Systems Engineering Synthesis and
Metrics Is Urgently Needed," Computer 22, 7 Assessment Technology Workshop, NSWC, Silver
(July), 88-89. Spring, MD, pp. 139-146.

Caldiera, G. and V.R. Basili (1991), "Identifying and Fenick, S. (1990), "Implementing Management Met-
Qualifying Reusable Software Components," tics: An Army Program," IEEE Software 7, 2
Computer 24, 2 (Feb.), 61-70. (Mar.), 65-72.

Cardenas-Garcia, S. and M.V. Zelkowitz (1991), "A Fenton, NE. and A.A. Kaposi (1987), "Metrics and
Management Tool for Evaluation of Software De- Software Structure," Information and Software
signs," IEEE Transactions on Software En- Technology 29, 6 (Jul.-Aug.), 301-320.
gineering 17,9 (Sept.), 961-972. Freedman, R.S. (1991), "Testability of Software Com-

Carver, D.L. (1988), "Comparison of the Effect on De- ponents," IEEE Transactions on Software En-
velopment Paradigms on Increases in Complex- gineering 17, 6 (June), 553-564.
ity," Software Engineering Journal 3. 6 (Nov.), Geist, R. and K. Trivedi (1990), "Reliability Estimation
223-228. of Fault-Tolerant Systems: Tools and Tech-

Chu, W.W., C. Sit and K.K. Leung (1991), "Task Re- niques," Computer 23, 7 (July),-52-62.
sponse Time for Real-Time Distributed Systems Gibson, V.R. and J.A. Senn (1989), "System Structure
With Resource Contentions," IEEE Transactions and Software Maintenance Performance," Corn-
on Software Engineering 17, 10 (Oct.), 1076- munications of the ACM 32, 3 (Mar.), 347-358.
1092.

137

Gilb, T. (1977), Software Metrit-s, Winthrop Publishers, Herndon, MA. and JA. McCall (1983), "The Re-
Cambridge, MA. quirements Management Methodology: A Meas-

Gilb, T. (1985), "Software Specification and Design urement Framework for Total Systems Re-
Must 'Engineer" Quality and Cost Iteratively", In liability," In Total Systems Reliability Symposium
Third International Workshop on Software Spec- (Gaithersburg, MD, Dec. 12-14), IEEE, Piscat-
ification and Design (London, England, August away, NJ, pp. 119-122.
26-27), IEEE, London, England, pp. 75-76. Hirayama, M. (1990), "Practice of Quality Modeling

Gill, G.K. and C.F. lKemerer (1991), "Cyclomatic Corn- and Measurement on Software Life-Cycle," In
plexity Density and Software Maintenance Pro- 12th International Conference on Software En-
ductivity," IEEE Transactions on Software En- gineering (Nice, France, Mar. 26-30), IEEE, Pis-

gineering 17, 12 (Dec.), 1284-1288. cataway, NJ, pp. 98-107.
Gould, J.D., SJ. Boies, and C. Lewis (1991), "Making Hoffman, G.D. (1989), "Early Introduction of Software

Usable, Useful, Productivity. Enhancing Comput- Metrics," In Proceedings of the IEEE 1989 Na-
er Applications," Communications of the A CM 34, tional Aerospace and Electronics Conference -
1 (Jan.), 75-85. NAECON 1989 (Dayton, Ohio, May 22-26),

Grady, R.B. (1987), "Measuring and Managing Soft- IEEE, Piscataway, NJ, pp. 559-563.
ware Maintenance," IEEE Software 4, 5 (Sept.), Ince, D.C. and S. Hekmatpour (1988), "An Approach to
35-45. Automated Software Design Based on Product

Grady, R.B. (1990), "Work-Product Analysis: The Phi- Metrics," Software Engineering Journal 3. 2
losopher's Stone of Software?," IEEE Software 7. (Mar.), 53-56.
2 (Mar.), 26-34. Ince, D.O. and MJ. Sheppard (1988), "System Design

Grady, R.B. and D.L. Caswell (1987), Software Met- Metrics: A review and perspective," In Software
rics: Establishing a Company-Wide Program, Engineering 88 Second IEFIBCS Conference
Prentice-Hall, Englewood Cliffs, NJ. (Liverpool, England, July 11-15), IEE, London,

Gremillion, L.L. (1984), "Determinants of Program Re- England, pp. 23-27.
pair Maintenance Requirements," Communica- Joshi, S.M. and K.B. Misra (1991), "Quantitative Anal-
tions of theACM 27, 8 (Aug.), 826-832. ysis of Software Quality During the 'Design and

Hall, D.L., J.J. Gibbons and D.A. Woodle (1985), Implementation' Phase," Microelectronics and
"Avoid Disaster: The Use of an Integrated Tool Reliability 31, 5, 879-884.
for Managing Throughput and Response Time Re- Karolak, D.K. (1985), "Identifying Software Quality
quirements in Embedded Real-Time Systems," In Metrics for a Large Software Development," In
Conference on Software Tools (New York, NY, GLOBECOM '85: IEEE Global Tele-
April 15-17), IEEE, Piscataway, NJ, pp. 106-111. communications Conference Record (New Or-

Han, W., Y. Choe and Y. Park (1987), "Software Met- leans, LA, Dec. 2-5), IEEE, Piscataway, NJ, pp.
rics Using Operand Types," In Proceedings - 61-64.
TENCON 87: 1987 IEEE Region 10 Conference, Karunanithi, N., D. Whitley, and Y.K. Malaiya (1992),
"Computers and Communications Technology To- "Predictability of Software Reliability Using Con-
wards 2000' (Piscataway, New Jersey, August 25- nectionist Models," IEEE Transactions on Soft-
28), IEEE, Seoul, South Korea, pp. 1212-1215. ware Engineering 18, 7 (July), 563-574.

Heitkoeten, U. (1990), "Design Metrics and Their Aid Kavinde, T.M. (1989), "Performance Analysis of Soft-
to Automatic Collection," Information and Soft- ware: CDOT case study," In TENCON '89:
ware Technology 32, 1 (Jan.-Feb.), 79-87. Fourth IEEE Region 10 International Conference

Henry, S. and C. Selig (1990), "Predicting Source-Code (Bombay, India, Nov. 22-24), IEEE, Piscataway,
Complexity at the Design Stage," IEEE Software New Jersey, pp. 718-721.
7,2 (Mar.), 36-43. Kearney, J.K., R.L. Sedlmeyer, W.B. Thompson, M.A.

Henry, S. and D. Kafura (1984), "The Evaluation of Gray and M.A. Adler (1986), "Software Complex-
Systems Structure Using Quantitative Software ity Measurement," Communications of the ACM
Metrics," Software Practice and Experience 14, 6 29, 11 (Nov.), 1044-1050.
(June), 561-573. Kemerer, C.F. (1987), "An Empirical Validation of

Henry, S. and R. Goff (1989), "Complexity Measure- Software Cost Estimation Models," Communica-
ment of a Graphical Programming Language," tions of the ACM 30, 5 (May), 416-429.
Software- Practice and Experience 9, 4 (Nov.), Kemerer, C.F. (1993), "Reliability of Function Points
1065-1088. Measurement," Communications of the A CM 36, 2

Henry, S. and R. Goff (1991), "Comparison of a Graph- (Feb.), 85-97.
ical and a Textual Design Language Using Soft- Kemerer, C.F. and B.S. Porter (1992), "Improving the
ware Quality Metrics," Journal of Systems and Reliability of Function Point Measurement: An
Software 14,3 (Mar.), 133-144. Empirical Study," IEEE Transactions on Software

Engineering 18, 11 (Nov.), 1011-1024.

138

Khoshgoftaar, T.M., J.C. Munson, B.B. Bhattacharaya Mukhopadhyay, T. and S. Kekre (1992), "Software Ef-
and G.D. Richardson (1992), "Predictive Mod- fort Models for Early Estimation of Process Con-
cling Techniques of Software Quality from Soft- trol Applications," IEEE Transactions on Soft-
ware Measures," IEEE Transactions on Software ware Engineering 18, 10 (Oct.), 915-924.
Engineering 18, 11 (Nov.), 979-987. Munson, J. and T.M. Khoshgoftaar (1992), "The De-

Kitchenham, B.A. (1988), "An Evaluation of Software tection of Fault-Prone Programs," IEEE Trans-
Structure Metrics," In Proceedings of the Twelh actions on Software Engineering 18, 5 (May),
Annual International Computer Software and Ap- 423-433.
plications Conference (COMPSAC 88) (Chicago, Munson, J.C. and T.M. Khoshgoftaar (1992), "Meas-
Illinois, Oct. 5-7), MEEE, Piscataway, NJ, pp. 369- uring Dynamic Program Complexity," IEEE Soft-
376. ware 9, 6 (Nov.), 48-55.

Kitchenham, B.A. and JA. McDermid (1986), "Soft- Musa, J.D. and A.F. Ackerman (1989), "Quantifying
ware Metrics and Integrated Support Environ- Software Validation: When to Stop Testing?,"
ments," Software Engineering 1, 1 (Jan.), 58-64. IEEE Software 6, 3 (May), 19-27.

Kitchenham, B.A. and SJ. Linkman (1990), "Design Nance, RE and J.D. Arthur (1988), "The Methodology
Metrics in Practice," Information Software and Roles in the Realization of a Model Development
Technology 32 4 (May), 304-310. Environment," In Proceedings of the 1988 Winter

Kitchenham, B.A., L.M. Pickard, and S2. Linkman Simulation Conference, pp. 220-225.
(1990), "Evaluation of some design metrics," Soft- Navlakha, J.K. (1987), "A Survey of System Complex-
ware Engineering Journal 9, 1 (Jan.), 50-58. ity Metrics," Computer Journal 30, 3 (June), 233-

LakOimanan, KB., S. Jayaprakash and P.K. Sinha 238.
(1991), "Properties of Control-Flow Complexity Nejmeh, B.A. (1988), "NPATH: A Measure of Execu-
Measures," IEEE Transactions on Software En- tion Path Complexity and its Applications," Com-
gineering 17, 12 (Dec.), 1289-1295. munications oftheACM31, 2 (Feb.), 188-200.

Laranjeira, L.A. (1990), "Software Size Estimation of Nguyen, C.M. and S.L. Howell (1992), "System DesignI Object-Oriented Systems," IEEE Transactions on Factors," In Proceedings of the 1992 Complex
Software Engineering 16, 5 (May), 510-522. Systems Engineering Synthesis and Assessment

lew, KLS, T.S. Dillon and K.E. Forward (1988), "Soft- Technology Workshop, NSWC, Silver Spring,
ware Complexity and Its Impact on Software Re- MD, pp. 147-154.
liability," IEEE Transactions on Software En- Parnas, D.L., L.v. Schouwen, and S.P. Kwan (1990),
gineering 14, 11 (Nov.), 1645-1655. "Evaluation of Safety-Critical Software," Com-

Litke, J. (1992), "A Method for the Assessment of Sys- munications of the ACM 33, 6 (June), 636-648.
tem Designs," In Proceedings of the 1992 Corn- Paulish, DJ. (1990), "Methods and Metrics for De-
plex Systems Engineering Synthesis and Assess- veloping High Quality Patient Monitoring System
ment Technology Workshop, NSWC, Silver Software," In Proceedings of the Third Annual
Spring, MD, pp. 155-169. IEEE Symposium on Computer-Based Medical

Low, G.C. and DI_. Jeffrey (1990), "Function Points in Systems (Chapel Hill, NC, Jun 3-6), IEEE, Piscat-
the Estimation and Evaluation of the Software away, NJ, pp. 145-152.
Process," IEEE Transactions on Software En- Pollock, G.M. and S. Sheppard (1987), "A Design
gineering 16, 1 (Jan.), 64-71. Methodology for the Utilization of Metrics Within

MacKnight, C.B. and S. Balagopalan (1989), "An Eval- Various Phases of Software Life-cycle Models,"
uation Tool for Measuring Authoring System Per- In Proceedings 11 - COMPSAC 87: The Eleventh
formance," Communications of the ACM 32, 10 Annual International Computer Software and Ap-
(Oct.), 1231-1236. plications Conference (Tokyo, Japan, Oct. 7-9),

McCabe, TJ. and C.W. Butler (1989), "Design Coin- IEEE, Piscataway, NJ, pp. 221-230.
plexity Measurement and Testing," Communica- Porter, A.A. and R.W. Selby (1990), "Empirically
tions ofthe ACM 32, 12 (Dec.), 1415-1425. Guided Software Development Using Metric-

McCabe, TJ., L.F. Young, K.W. Claybaugh and J. Based Classification Trees," IEEE Software 7, 2
McManus (1983), "Design Basis Paths: A Com- (Mar.), 46-54.
plexity Driven Design Inspection Methodology,' Ramamoorthy, C.V., A. Bhide and V. Garg (1986),
In Total Systems Reliability Symposium (Gai- "Software Quality and Requirements Specifica-
thersburg, MD, Dec. 12-14), IEEE, Piscataway, tion," In Proceedings - IEEE Computer Society
NJ, pp. 67-72. 1986 International Conference on Computer Lan-

Mohanty, S.N. (1981), "Entropy Metrics for Design guages (Miami, Florida, Oct. 27-30), IEEE, Pis-
Evaluation," Journal of Systems and Software 2, 1 cataway, NJ, pp. 75-83.
(Feb.), 39-46. Ramamoorthy, C.V., W. Tsai and Y. Usuda (1984),

"Software Engineering: Problems and Per-
spectives," Computer 17, 10 (Oct.), 191-207.

139

Ramamoorthy, C.V., W. Tsai, T. Yamaura, and A. Shepperd, M. and D. lIce (1990). "The Use of Metrics
Bhide (1985), "Metrics Guided Methodology," In for the Early Detection of Design Errors," In
Proceedings - COMPSAC 85: The IEEE Comput- SE9O: Proceedings of Software Engineering 90
er Society's Ninth International Computer Soft- (Brighton, UK, July 24-27), Cambridge Uni-
ware and Applications Conference (Chicago, Il- versity Press, Cambridge, UK, pp. 67-88.
linois, Oct. 9-11), IEEE, Piscataway, New Jersey, Silverman, J., N. Giddings, and J. Beane (1983), "An
pp. 111-120. Approach to Design-for-Maintenance," In Record-

Ramamurthy, N. and A. Melton (1988), "A Synthesis of Software Maintenance Workshop (Monterey, OA,
Software Science Measures and the Cyclomatic Dec. 6-8), IEEE, Piscataway, NJ, pp. 106-110.
Number," IEEE Transactions on Software En- Smith, C. and J.C. Browne (1980), "Aspects of Soft-
gineering 14, 8 (Aug.), 1116-1121. ware Design Analysis: Concurrency and Block-

Reibman, A.L. and M. Veeraraghavan (1991), "Re- ing," Performance Evaluation Review 9, 2 (Sum-
liability Modeling: An Overview for Systems De- mer), 245-253.
signers," Computer 24,4 (Apr.), 49-56. Symons, C.R. (1988), "Function Point Analysis: Dif-

Reynolds, R.G. (1987), "Metric-Based Readoning ficulties and Improvements," IEEE Transactions
About Psuedocode Design in the Partial Metrics on Software Engineering 14, 1 (Jan.), 2-12.
System," Information and Software Technology Troy, D.A. and S.H. Zweben (1981), "Measuring the
29,9 (Nov.), 497-502. Quality of Structured Designs," Journal of Sys-

Reynolds, R.G. (1987), "The Partial Metrics System: tems and Software 2, 2 (June), 113-120.
Modeling the Stepwise Refinement Process Using Velez, C.E. and PA. Scheffer (1978), "On the Problem
Partial Metrics," Communications of the ACM 30, of Software Design and Measuring Quality," In
11 (Nov.), 956-963. IEEE Proceedings of the National Aerospace and

Reynolds, R.G. (1990), "Partial Metrics System: A Electronics Conference NAECON '78 (Dayton,
Tool to Support the Metrics-Driven Design of Ohio, May 16-18), IEEE, Piscataway, New Jersey,
Psuedocode Programs," Journal of Systems and pp. 223-229.
Software 9,4 (Jan.), 287-295. Verner, J. and G. Tate (1992), "A Software Size Mod-

Rombach, H.D. (1990), "Design Measurement: Some el," IEEE Transactions on Software Engineering
Lessons Learned," IEEE Software 7, 2 (Mar.), 17- 18,4 (Apr.), 265-278.
25. Vessey, I. and R. Weber (1983), "Some Factors Af-

Schneidewind, N.F. (1979), "Software Metrics for Aid- fecting Program Repair Maintenance," Com-
ing Program Development and Debugging," In munications of the ACM 26, 2 (Feb.), 128-136.
AFIPS Conference Proceedings Vol. 48 (New Vienneau, RLi. (1992), "The Consolidated Experience
York, NY, June 4-7), AFPS Press, Montvale, NJ, Factory: An Approach for Instrumenting Systems
pp. 989-994. Engineering," In Proceedings of the 1992 Corm-

Schneidewind, N.F. (1992), "Methodology for Val- plex Systems Engineering Synthesis and Assess-
idating Software Metrics," In Proceedings of the ment Technology Workshop, NSWC, Silver
1992 Complex Systems Engineering Synthesis and Spring, MD, pp. 201-206.
Assessment Technology Workshop, NSWC, Silver Walters, G.. and JA. McCall (1979), "Software Qual-
Spring, MD, pp. 171-198. ity Metrics for Life-Cycle Cost-Reduction," IEEE

Selby, R.W. (1990), "Extensible Integration Frame- Transactions on Reliability R-28, 3 (Aug.), 212-
works for Measurement," IEEE Software 7, 6 220.
(Nov.), 83-84. Weyuker, EJ. (1988), "Evaluating Software Complex-

Shapperd, M. (1990), "Design Metrics: An Empirical ity Measures:' IEEE Transactions on Software
Analysis," Software Engineering Journal 5, 1 Engineering 14,9 (Sept.), 1357-1365.
(Jan.), 3-10. Whitworth, M.H. and PA. Szulewski (1980), "The

Sheppard, M. (1990), "Early Life-cycle Metrics and Measurement of Control and Data Flow Complex-
Software quality models," Information and Soft- ity in Software Designs," In IEEE Computer So-
ware Technology 32, 4 (May), 311-316. ciety International Computer Software Applica-

Shepperd, M. (1988), "An Evaluation of Software Prod- tions Conference 4th COMPSAC 80 (Chicago,
uct metrics," Information and Software Tech- Illinois, Oct. 27-31), IEEE, Piscataway, New Jer-
nology 30, 3 (Apr.), 177-288. sey, pp. 735-743.

Shepperd, M. and D. Ince (1989), "Metrics, Outlier Wohlin, C. and D. Rapp (1989), "Performance Analysis
Analysis and the Software Design Process," in- in the Early Design of Software," In Seventh In-
formation and Software Technology 31, 2 (Mar.), ternational Conference on Software Engineering
91-98. for Telecommunications Switching Systems

(Bournemouth, England, July 3-6), IEE, London,
England, pp. 114-121.

140

OPrflAL BILUCTXON OF ZULURNI DATA POR PREDICTINGF ALUR 0 COUNTS

Norman F. Schneidevind

Code AS/ss
Naval Postgraduate School
Monterey, CA 93943
(408) 656-2719/2471
FAX: (408) 656-3407
Internet: 0442p.@vml.cc.nps.navy.2il

In the use of software reliability models it is not necessarily the
case that all the failure data should be used to estimate model
parameters and to predict failures. The reason for this is that old data
may not be as representative of the current and future failure process
as recent data. Therefore it may be possible to obtain more accurate
predictions of future failures by excluding or giving lower weight to
the earlier failure counts. Although techniques such as moving average
and exponential smoothing are frequently used in other fields, such as
inventory control, we did not find use of this idea in the various
models we surveyed. One model that includes the concept of -electing a
subset of the failure data, where appropriate, is the Schne iewind Non-
Homogeneous Poisson Process (NHPP) software reliability model. In order
to use the concept of "data aging", there must be a criterion for
"determining the optimal value of the starting failure count interval. In
previous research we identified the mean square error as the best
criterion for selecting the starting interval of the failure data. In
this paper we apply the criterion to select the optimal starting
interval. We show that significantly improved reliability predictions
can be obtained by using a subset of the failure data, based on applying
the criterion, and using the Space Shuttle On-Board software as an
example.

Xeyworft: NHPP software reliability model, optimal selection of failure
data, Space Shuttle.

In the use of software reliability models it is not necessarily the
case that all the failure data should be used to estimate model
parameters and to predict failures. The reason for this is that old data
may not be as representative of the current and future failure process
as recent data. If the failure process remains the same over a long
series of observations, we should use a great deal (or all) of the

Sfailure data; if there is a significant change in the process, we should
use only the most recent observations (BRO 63]. Therefore it may be
possible to obtain more accurate predictions of future failures by
excluding or giving lower weight to the earlier failure counte. Although
techniques such as moving average and exponential smoothing are
frequently used in other fields, such as inventory control, we did not
find mention of this idea in the many models we examined in various
papers and reports that contain surveys of models [AIA 91, ABD 86, FAR
91, FAR 83, GOE 85, LIT 80]. One model that includes the concept of

141

selecting a subset of the failure data is the Schneidewind Non-
Homogeneous Poisson Process (NHPP) software reliability model [SCH 75,
XIE 92]. In order to use the concept of data aging (i.e., giving more
weight to recent failure counts), there must be a criterion for
determining the optimal value of s, an index in the range lsst, which
is the starting value of equal length failure count intervals. In this
model one may choose to use all the failure counts in the execution
intervals from'I to t (Method 1), exclude counts from 1 to s-1 (Method
2), or use an aggregate count from 1 to s-1 and individual counts from
a to t (Method 3).

Invortanco of Research

The importance of this research is that significant improvements were
obtained in the accuracy of predicting failure count and time to next
failure (due to space limitations, only the failure count analysis is
presented in this paper) by not using all the observed failure data,
where appropriate, as we will illustrate in the examples. Also of
significance is the identification of a criterion for determining "where
appripriate"; that is, the method for determining the optimal value of
s, s, where "optimal" is defined as the value of s that produces the
most accurate predictions. This research was conducted on the
Schneidewind model and the criterion was applied to the Space Shuttle
On-Board flight software. Since this model is used to assist IBM-Houston
in making software reliability predictions for the Space Shuttle
software, we were motivated to find a generic method for optimal failure
data selection and to apply this method to obtain the most accurate
predictions possible for the Space Shuttle [SCH 92, AIA 92]. The
concepts developed here have general applicability to other models but
in order to realize the advantages of optimal data selection, it would
be necessary to modify the parameter estimation methods used in those
models to explicitly allow for subsets of the failure data to be used.

The purpose of our r .•earch is to demonstrate the effectiveness of the
Mean Square Error (MSE) criterion, which we identified as the best of
four criteria which were developed and analyzed in previous research
[SCH 93], for selecting s°. We demonstrate that, when conditions warrant,
s*>l can produce more accurate failure predictions than s=1 for the Space
Shuttle software.

Before discussing the criterion for selecting s*, we provide an
overview of the Schneidewind model parameter estimation in order to
establish the rationale for data aging. As a by-product of this analysis
we show that, for certain modules, dramatic improvements can be made in
prediction accuracy by not using all the failure counts. We close with
conclusions about the utility of the data aging approach and the
criterion to use for data aging; we also indicate our future research
efforts.

OVERVIEW OF 8CKNEIDEWIND MODEL PARAMETER ESTIMATION

The method of maximum likelihood is used to estimate the model
parameters a and 0, for a given s, where a is the failure rate at t=0
and P is the failure rate time constant (i.e., a measure of how fast the

142

failure rate decays -- the smaller the value of 0, the faster the

failure rate decreases).

a. Parameter estimationt Method I

Use all of the failure counts from interval 1 through t (1-sat). This
method is used if it is assumed that all of the historical failure
counts from 1 'through t are representative of the future failure
process. Equations (1) and (2) are used to estimate 0 and a,I respectively [SCH 75, FAR 83# FAR 91].

, - I; -t- k -- #. (1)
0X(-2 exp (Pt)1 irO --•-t"

SPxt
)21-exp(-pt)

where xi. are failure counts .in 1,2,...,k+l,...,t and X, is the
cumulative failure count in 1,t.

b. Parameter estimationt Method 2

Use failure counts only in the intervals s through t (19s:t). This
method is used if it is assumed that only the historical failure counts
from s through t are representative of the future failure process.
Equations (3) and (4) are used to estimate 0 and a, respectively (SCH
75, FAR 83, FAR 91].

1 ts+ t-8(3)
"expP-3- exp(p (t-s+1)) -1k X..

a =._.Pt (4)T-exp (- P(t-9+1))

where x;+t are failure counts in s,s+l,...,s+k,...,t and X.. is the
cumulative failure count in st. We note that Method 2 is equivalent to
Method 1 for s-1 (i.e., (1) and (2) are obtained by substituting s-1 in
(3) and (4), respectively).

Go. arameter estimations Method 3

Use the cumulative failure count in the interval 1 through 9-1 and
Individual failure counts in the intervals s through t (2<s~t). This
z -'hod is used if it is assumed that the historical cumulative failure
count from 1 through s-1 and the individual failure counts from s
through t are representative of the future failure process. This method
is intermediate to Method 1, which uses all the data, and Method 2,
which discards "old" data. Equations (5) and (6) are used to estimate U
and a, respectively (SCH 75, FAR 83, FAR 91).

143

I

(-), t-X ' I
-eXP ((-2)),-1l(Pt

where X,, is the cumulative failure count in 1,s-1. We note that Method I
3 is equivalent to Method 1 for s-2 (i.e., (1) is obtained by
substituting s-2 in (5)). 1

The three methods are summarized in Table 1 with respect to the
observed parameter estimation range and the prediction range -- observed
(itt) and future (i>t) -- where T is the upper limit of the prediction
range.

Table 1 !

Parameter ad]Prediction Ranges

thod Parameter redLotioa redictL
- ang ting~ed Fuuro

I s-I lsist t<itST

2 1:58:t B5si~t t<i:ST

OPTUM IL SEIUCTION OF FAZLURI DATA USING METHOD 2

As stated, Method 2 disregards failure counts for intervals 1,..
where lUsgt. In this section we apply Method 2 with respect to the MSE
criterion. in all examples a and A are estimated in the range i1--20 and I
failure count predictions are made in the range i-21-30, where an
interval is 30 days of continuous execution of the Space Shuttle
software.
Failure Prediction

once a and P, have been estimated for a given s, using one of the three
methods, various predictions can be made. However, since we want to find
(a, P, a*), the computational procedure is to first use the MSE
criterion, which is described in the next section, to find the optimal
triple and then use it in the prediction equation. The predicted
cumulative number of failures is given by (7) for Method 2. This
equation is derived from (4), where Ft-X, replaces X., reflecting the
fact that X.4 only accounts for failures in the range s,t. Failures in
the range 1,s-1, which are accounted for by X,,, must be included in (7).

71(a)=a/fl) [1-ezp -f(i-s+U)) 3];4 (7)

144

The equation for Methods 1 and 3 is obtained by setting a-1, using the
values of e, PO obtained from the respective parameter estimation
methods, and setting X-=O.

Mean SJutre Urror Criterion

The Mean Square criterion for cumulative failures is to minimize (8).

t

SE() - (1-exp(-pt-s+1

The rationale of MSE (mean squared difference between predicted and
actual cumulative failure counts X-X., in the range s,t) is to minimize
the sum of the variance and the square of the bias of the predicted
failure count (J]N 68]. However, since a substantial amount of
computation could be involved in computing MSE for all values of s, we
adopt a modified rule of using the value of s where MSE starts to
increase after initially decreasing from s-1; we call this value a' to
distinguish it from s° the value of s where MSE is minimum. This approach
results in less computation and minimum discarding of "old" data. Our
experience indicates that a* will provide accurate predictions and much
better ones than s-1 in those cases where s-1 is not optimal.
Furthermore, we recognize that there is no assurance that s" computed in
the parameter estimation range will necessarily result in the minimum
MSE or most accurate prediction in the prediction range. In fact, as
will be seen, in some cases our heuristic produces better predictions
than that obtained with s. The MSE for Methods 1 and 3 is obtained by
making the adjustments described in the previous section. Equation (8)
is plotted in Figure 1 for Module 1 of the Space Shuttle software for
both the parameter estimation range and the prediction range. To obtain
the latter, we modify (8) to use summation limits of t+l to T and to use
a denominator of T-t, where T is the upper limit of the prediction
range. This figure shows s'-4 and so-ll in both curves.

In order to provide a measure of prediction accuracy that is
independent of the MSE criterion, we compute the mean relative error
(MIRE) for the prediction range, which is given by (9) [KHO]

=9 I 14Y 1)/ (T-t). (9)

This result is shown in Figure 2, where lRE and MSE (repeated from
Figure 1) are plotted for Module 1. For MRE, we again have s'-4 and
sa-ll. Now, we compare F1(4) with F1(1) in Figure 3 and see that s'-4
provides a better prediction than s-1, with the latter showing too much
overshoot.

These procedures are repeated for Module 2 in Figures 4, 5 and 6 and
for Module 3 in Figures 7, 8 and 9. The prediction curves in Figures 3,
6 and 9, which all show better prediction accuracy for s' as compared to
s-1 (s-2 is used for comparison for Module 2 because estimates of a and
f could not be obtained for this module), dramatize the importance of
using data aging, where appropriate. The analysis of the starting

145

interval is summarized in Table 2. When 8' is obtained from RSE for the
parameter estimation range, it produces the "best" s for Module 2
(MRE(6) differs from NRE(7) by only .03) and Module 3, as determined by
the NSE and NRE for the prediction range and provides better predictions
than s-1 for all three modules. As the execution of the software
continues for T>30, the described procedures would be repeated with t-30
(i.e., new upper limit of parameter estimation range).

Table 2

Analysis of Starting Interval

NS:Parameter 1M8E: edoonR rditn

odule Estimation ngeRe ange Range

1 ' 14, s9-l 5'4, s-l1 S'-4, s- -11i

2 sr-7, s-7 s.m6 8 -6 s-6, S -6

3 s8-4, s8°10 I s4, 5-4 s*-4, s-4

SUMMARY. CONCLUSIONS AND FUTURE RESEARCH

We found that !SE does a good job of identifying s'; it has no
dependence on model assumptions and it minimizes the sum of the variance
and the square of the bias of the predicted failure count. We noted that
once MSE reaches a minimum, as a function of s, and starts to increase,
the computation can be terminated at that point because s' provides a
good (better than s-l) prediction, although not necessarily the best
prediction. Since the future failure process may not mirror the past, no
criterion can produce the best prediction in all cases. What we can
accomplish is to produce better predictions than would be the case in
using all the data. This we have demonstrated with the examples. Since
the other Space Shuttle modules have failure count distributions over
execution time that are similar to the ones analyzed, we believe data
aging is applicable in general to the Space Shuttle software. Our
results suggest that other software reliability models could benefit
from using data aging.

The next stage of our research will involve the use of Jet Propulsion
Laboratory planetary mission data and Shuttle mission ground control
data from the Johnson Space Center to determine whether data aging is
applicable to different environments. In addition we will analyze the
MSE criterion relative to the use of Method 3 and we will report our
results in obtaining improved time to next failure predictions by using
data aging.

The analysis of experimental results of the intermedfate software
failure data in this paper should not be construed as a prediction of
the final Space Shuttle software reliability. Rather, the Space Shuttle
data is used as real project examples for the purpose of developing,
enhancing and validating software reliability models.

146

ACIKNOWILEDGOEINTS

We wish to acknowledge the support provided for this project by Dr.
William Farr, Naval Surface Warfare Center; and Mr. Ted Keller and Mr.
David Hamilton, International Business Machines Corporation.

IRFERENCE

[AIA 92] Recommended Practice for Software Reliability, R-013-1992
(Draft), American Institute of Aeronautics and Astronautics,
April 1992.

[ABD 86] A. A. Abdel-Ghaly, et al., "Evaluation of Competing Software
Reliability Predictions", IEEE Transactions on Software
Engineering, Vol. SE-12, No. 9, September 1986, pp. 950-967.

[BRO 63] Robert Goodell Brown, Smoothing, Forecasting and Prediction of
Discrete Time Series, Prentice-Hall, Inc., 1963.

[FAR 83] William H. Farr, A survey of Software Reliability Modeling and
Estimation, NSWC TR 82-171, Naval Surface Weapons Center,
September 1983.

[FAR 91] William H. Farr and Oliver D. Smith, Statistical Modeling and
Estimation of Reliability Functions for Software (SMERFS)
Users Guide, NAVSWC TR-84-373, Revision 2, Naval Surface
Weapons Center, March 1991.

[ibid] Library Access Guide, NAVSWC TR-84-371.

[GOE 85] Amrit L. Goel, "Software Reliability Models: Assumptions,
Limitations, and Applicability, IEEE Transactions on Software
Engineering, Vol. SE-11, No. 12, December 1985, pp. 1411-1423.

[JEN 68] Gwilym M. Jenkins and Donald G. Watts, Spectral Analysis and
its Applications, Holden-Day, 1968.

[KHO 92] Taghi M. Khoshgoftarr, et al., "Predictive Modeling Techniques
of Software Quality from Software Measures", Transactions on
Software Engineering, Vol. 18, No. 11, November 1992, pp. 979-
987.

[LIT 80] B. Littlewood, "Theories of Software Reliability: How Good Are
They and How Can They Be Improved", Transactions on Software
Engineering, Vol. SE-6, No. 5, September 1980, pp. 489-500,

[SCH 75] Norman F. Schneidewind, "Analysis of Error Processes I

Computer Software", Proceedings of the International
Conference on Reliable Software, IEEE Computer Society, 21-23
April 1975, pp. 337-346.

[ibid] Sigplan Notices, Volume 10, Number 6, 1975.

147

[SCH 923 Norman F. Schneidewind and T.W. Keller, "Application of
Reliability Models to the Space Shuttle", IEEE Software, July
1992 pp. 28-33.

[SCH 93] Norman F. Schneidewind, "A Software Reliability Model with
Optimal Selection of Failure Data", Proceedings of the Fifth
Annual Oreqon Workshop on Software Metrics, Silver Falls,,
Oregon, March 21-23, 1993.

[XIE 92] M. Xie and M. Zhao, "The Schneidewind Software Reliability
Model Revisited", Third International Symposium on Software
Reliability Engineering, IEEE Computer Society Press, October
1992, pp. 184-192.

148

Mean Square Error: Parameter Estimation

Rangs(1-20) and Prediction Range(21-30)

SI I I I I I I p I , I I I I I I I , I I , I
ego

Range* 1-20

Range: 221-30"
3..

goo

L

L
L

L
* 0.4

0*

0)+ -

9 a 4 a 1 12

Figural o.. s (Starting Interval)

Method 2* Module 1

149

Mean Square Error (MSE) & Mean Relative

Error (MRE) in Prediction Range 21-30

0.16 -MSE

MRE

6.04

6.6 4 a a

Figure2 a. (Starting Interval)
Method 2# Module 1.

-i

Predicted & Actual Cumulative Failures,

s=4 (MSE Criterion), s=1

I ' ''II ' til 1'1 1 "1 II ' I 5 I I ' I ' " I..

a4.6

L
• -I .

3

S.. -+. 5s=4
4.,

• •-Actual

6.6w

4.6
I . , I , ,* p II , , , I , , I , I

6 5 IS is as as 30

Figure.3 ... Execution Time (Intervals)

Method 2. Module 1.

151

I

Mean Square Error: Parameter Estimation I
Range(I-20) and Prediction Range(21-30) i

I

II0
L
LW
LU

3Range:* 1-20
"•) Range: 21-30

SaS te

II

4," ''" 1
I , I , , I , , I , , I , , I

F~igure.4 .. • (Starting Interval)

Method 2. Module 2.

152

Mean Square Error (MSE) & Moan Relative

Error (MRE) in Prediction Range 21-30

I * I I I I I I I I I I

.'MSE

MRE

4

II

6 1

, I , , I , a I , I I * a I

S3 S S 12 15

Figure5 ... s (Startimg Interval)
Method 2. Module 2.

153

Predicted & Actual Cumulative Failures,
s=7 (MSE Criturion)p s=2

11 poll 11111 11111 1111 11T1-1 111511rT

161

• I
13 -1

L

*3
-4~

rniI

.IJ

I IN +

4i ff " "+ =2
3•i++""# Actual

E

I * , I , , , .I , , , I , I , , , I I , , , I , , , , I

0 5 10 as 30

FIgure 6 ... Execution Time (.Intervals)
Method 2. Module 2.

154

Mean Square Error: Parameter Estimation

Range(1-20) and Prediction Range(21-30)

,Range!*J-1

+ + Range,6 21L-3W

SIx

I

00

I s
I

(I

1155

t

t)

Eu I

91 I

0. 1 6 + % 9

II

+•

Mean Square Error (MSE) & Mean Relative
Error (MRE) in Prediction Range 21-30

1.5

-MSE
s.o fa4 MRE

6se

6.56

0° 3-66 5

Figures *e s. (Starting Interval)
Method 2. Module 3. 1

I

Predicted & Actual Cumulative Failure.p

n=4 (MSE Criterion)p 3=1

IQ 1 1 9 91 1 1 1 1 1 1 1 vl iv o li f e l, 1.1 1 9 SIT

I ~ Is

3 li

I
E L

I .

i is 20 a 30IFigure Execution Time (Intervals)

IMethod 2. Module 3t

;3

I

I
I
I
I
I

DESIGN STRUCTURING
FOR

SYSTEM ENGINEERING I
1993 Complex Systems Engineering

Synthesis and Assessment
Technology Workshop (CSESAW '93)

July 20-22, 1993

Washington, DC
I

Jee-In Kim, Evan Lock
Computer Command and Control Company

2300 Chestnut Street, Suite 230
Philadelphia, PA 19103

Tel: 215-854-0555, Fax: 215-854-0665
Email: lock@cccc.com

I

Design Srutrn for System Engineering

L Overview of Design Strucuring

The Design Structuring and Allocation Optimization (DESTINATION) methodology provides a
systems engineer with a mechanism for making design decisions baned on design optimiztion and
trade-off analysis. The methodology can be used as a front-end methodology for building large,
complexa n ra=tm soetet l.

Most existing front-end methodologies provide a mechanism for specifying system design but lack
a method of helping the systems engineer in determining a "good" system design. The DESTINA-
7"ON methodology provides tools of Design Structuring. Rese Allocation, Design Evaluation
and Optimization. Figure I shows an organization of the DESTINATION methodology.

PROBLEM PRODUCT

DESIGN
EVALUATION

CAPT
unu

- •WA•#,.Y=M

ORDESIGN RESOURCE LOSAL

owma STRUCTURING ALLOCATION
TAllO

OFPiMIZATION MANAGER

F-gre 1: The. DESTINATION Metodolg.

J\

This paper describes the Design Structuring component of DESTINATION. The system design
specification and the system requirements of software, hardware and human interfaces of a system to
be built are inputs for the Design Structuring component The system design will be optimized
through an iterative process of Design Structuring and trade-off analysis in conjunction with Re-
source Allocation, Design Evaluation and Optimization.

159

Tbis paper is organiztd as follows: Section 2 explains terminology used in this paper. The objectives
of Design Structuring are discussed in Section 3. The Design Structuring techniques are presented in
Section 4. An example of Design Structuring is given in Section 5. This paper is summarized and
concluded in Section 6.

2. Terminology

2.1. Design Element

A system design can be represented by a graph. The nodes and the edges of the graph have attributes
which express more detailed system design information. A design element is a portion of such a
graphical representation of a system design. A design element consists of a single or multiple
collection of nodes and/or edges.

2.2. Design Stnicturlng

Design Structuring is an engineering activity to construct graphical representations of the system
design (including hardware, software and people). The goal of this activity is to produce a design that
satisfies requirements in an optimal, or near optimal, manner. From a functional perspective, De-
sign Structuring starts with system requirements, optimization criteria, and possibly an existing de-
sign and produces a new systems design. Ihere are five basic design structuring operations--De-
composition and Recomposition, Fragmentation and Defragmentation and Replacement-which
are defined below.

2.3. Decomposition

Decomposition generates additional design constructs at a more detailed level in the graphical de-
sign representation hierarchy (lower level of abstraction). Figure 2 illustrates that the details of a
design element can be viewed via Decomposition. Node A and edges x, y and z of the data flow dia-
gram is decomposed into nodes (Al, A2, A3 and A4) and the corresponding edges (xl, x2, y and z)
connecting them.

2.4. Recomposition

Recomposition aggregates a design element of the hierarchy which consists of multiple nodes and
connections. Thus Recomposition is an inverse operation of Decomposition. In Figure 2, nodes, Al,
AZ A3 and A4, and their edges (xl, x2, y and z) are merged into a node, A, and edges, x, y and z, via
Recomposition.

160

Decomposition Recomposition

Figure 2: Decomposition/Recomposition Example--Data Flow Diagram.

2A. Fragmentation

Fragmentation replaces a design element with a more complicated design element within a given
level of the graphical design representation hierarchy (same level of abstraction). Replication of the
same design element is a special case of Fragmentation. As shown Figure 3, a node of a data flow
diagram, A, and edges, x and y, can be replaced byaset of nodes, Al, A2, A3 and A4, and edges via
Fragmentation.

2.6. Defragmentation

Defragmentation replaces a design element which consists of multiple nodes and edges with a sim-
pler design element which has less number of nodes and edges. In Figure 2, a design elements with
multiple nodes, AI, A2, A3 and A4, and their edges, x and y, are merged into a simpler design ele-
ment with a single node, A, and edges, x and y, via Defragmentation. Thus Defragmentation is an
inverse operation of Fragmentation.

161

Fragmentation

d Defragmentation A

I

Figure 3: FragrnentaUonlDefragmentadon Example-Data Flow Dagm.

2.7. Replacement

Replacement refers to a design structuring operation whereby a design element (either within the
same or a different level of abstraction) is exchanged with another design element. Replacement
does not include either Decomposition/Recomposition or Fragmentation/Defragmentation. The in-
terface (i.e., connections) to the replaced design element remains the same. There is not necessarily a
one-to-one mapping of nodes. Figure 4 shows an example of Replacing a design element in a graph
which corresponds to three decision points. The corresponding metrics such as McCabe, Myer's Ex-
tension, etc. shown at the bottom. Figure 4 illustrates why one design structuring may be preferable I
[HMKD82].

I
I
I

Mecut 2# "P4 WId MS " j-d moon I Wei. 4

U"Vt" IzweuwI4.4I UW" immIdl.41 MM ImrnAin..g ai
fi L%-3 i00 M-3 s S1.-3

Ur i c .ia-1a.9o -MCNI.0@9 "m CAu-1O.O1
CMsum g2Csgi. CUSIMSedkernBa.. I -egl~la-g 4 k lnlrndI~14.. SueO. lue. ii~tr P

FIgure 4: R -pa-t Example.

3. Objectives

There can be three general motivations behind why a systems engineer is interested in design struc-
turing.

3.1. Failitate Mapping acros Design Capture Models

The system engineer may want to structure a design in such a way so as to make it easier, more intu-
itive, or for facilitating optimization when mapping logical models onto implementation models and
vice versa. This also applies to the mapping of resources within the implementation model, particu-
larly mapping software onto hardware.

163

3.2. Optimize System Design Factors (SDF)

The system engineer would like to synthesize and trade-off multiple designs that optimize for single
criteria and eventually for multiple criteria or the values of system design factors (i.e., non-function-
al requirements). The list below contains examples of three particular SDFs that are of particular
interest.

(1). Performance
Performance can be improved by replicating (a special case of Fragmenta-
tion) design units to increase parallelism or by defragmenting to decrease
communication overhead. Defragmentation and replication represent de-
sign structuring techniques.

(2). Dependability
Similar to Performance, Dependability may be improved through Replica-
tion or Defragmentation.

(3). Maintainability
Improving system maintainability is strongly influenced by understand-
ability, which is similar to the first objective. One example of design
structuring which impacts maintainability would be to analyze a graph
which depicts the relationships of global variables and restructures it to
minimize module coupling.

3.3. Improve Design Understandability

The most common way to measure understandability has been through various complexity metrics.
Examples include size, McCabe, scope, etc.

4. Technique

Design Structuring techniques (be they heuristics or algorithms) arise from one of three areas: the
application domain, a design methodology, or graph theory. Each of these is briefly mentioned be-
low.

4.1. Application Domain

There are many domain-specific factors in system design. For example, Fragmentation is useful in
improving parallelism in a massively parallel processing environmenL On the other hand, Frag-
mentation can make a diagram complicated if the diagram is to be displayed in a graphically based
system. Certainly in Navy applications, such as sonar processing, there are specific devices and fuinc-
tions that are specific to a family of systems. Experts in a particular domain have developed design
structuring principles over time that can be captured and applied.

164

4.2. Dedig Medtodollea

Heuristics depend on a design methodology of a system such as Object-Oriented Design, Structured
Design, Task Structuring, Partitioning, etc. For example, the Task Structuring technique of
ADARTS (Ada Based Design Approach for real Tune Systems) [ADRT88J can be used.

4.6 Graph Theory

Complexity of a design can be measured as a number of nodes and connections of a diagram. For
instance, itis desired to have seven plus or minus two bubbles in any individual diagram to facilitate
human comprehension. However, this kind of simplistic guideline may easily be broken. Other
graph theories, involve the number of decision points, crossing edges, etc.

5. Example

Figure 5 graphically represents do,-ain of Design Structuring. A system engineer performs Design
Structuring according to objective, operation, technique, system perspective, and design capture
view.

Objective

Understandability

Operation
Mapping

System Design FactorsDecorn oniio

Fragmentation Iplmetaio

Design Capture Views
Graph leimplemenation

- ethodology dHardware•

Application Domain

Technique System System Persective

Figure 5: Domain of Design Structuring.

165

This section presents a sample Design Structuring technique based on ADARTS, a system design
methodology for structuring a system into concurrent tasks (or active objects). The performance of
the system can be increased through the task structuring process. In order to develop more maintain-
able and reusable components, ADARTS provides criteria of identifying modules (or passive ob-
jects). The ADARTS methodology is supported by many companies such as Software Productivity
Consortium and Cadre. The DESTINATION methodology can utilize the tools from these compa-
nies. It can use ADARTS for system design and optimize the system design through iteration of soft-
ware design with hardware decisions and organizational lessons with respect to System Design Fac-
tors (SDF) [SDF92].

5.1. ADARTS

Figure 6 illustrates steps of the ADARTS methodology. The first step of ADARTS is to express a
system design in Real Tome Structured Analysis (RTSA). Then concurrent tasks (in Dynamic View
or Task Architecture Diagram) and modules (in Static View or System Architecture Diagram) are
identified. A system architecture is derived from those diagrams.

Step
NuwIb1 1 2 3 4 5 6

pro= Arc Celtutt

Steps s

Tw.Si.ik AadmbsN -a.n ArbAeawu AA. A091101awa Ada C..ipm .o sy"40

Work I Due. D w"TI h ou uw, lwitl w"

I

Figure 6: Steps In the ADARTS Methodology.

166

5.2. Cruise Control System Example

A cruise control system of an automobile is used to demonstrate the Design Structuring method
based on ADARTS. An overall data flow diagram of a cruise control system is given in Figure 7.
The ADARTS task structuring criteria are applied to the data flow diagram of the cruise control sys-
tem design. A system engineer obtains a task architecture diagram as shown in Figure 8 from the data

flow diagram.

The criteria of object-oriented design are used for information hiding of hardware, software and
people of the system. A number of design structuring operations are applied to the task architecture
diagram in Figure 8. For example, a task, "Monitor Auto Sensors", in Figure 8 is "decomposed". The
same task in Figure 9 contains three objects denoting sensing devices. Another task, "Auto Speed
Control", in Figure 8 is "recomposed" to become an object. "Auto Speed Control", in Figure 9. The
message queue, "Sensor Change", in Figure 8 is "replaced" by a new object, "Cruise Control Event
Buffer". The result is a system architecture diagram shown in Figure 9.

Engine Shaft

Running Rotautio

1912 - --- - Meastore

Monitor - Speed

Se,, SuS I I s,.ance

" •€ CalPhestil

I
EnSage.d 3• Ove itotl 2 "C.e

tugigrulCumuilarve
Dlrakce~ Speed Osgance

Cruise 1hiruttie
C011114A Valkse
Request D Iisplay"/ • .' Lahw.,u. Speed

, / ,.,,,,, &
u•tut•i lisiancc

nver l r'"'t 1hultle)
Inr44 Inputs

6
4I DisplayIIhs"t- -Iat

Pu.oatiufit

Figure 7. Overall Data Flow Diagram-Cruise Control System.

167

OutI

AweImm utea pe

Auto Z Thwune

Sped .Awe~ Speed

tote"gnaw petae Dewean Masap Qume, 5..8 ADuss

ja I60al
F~~gureOut8. TakAcietu WRe Dar-ruSpeeCdto System.

T~unI
IbluctI
fusaun DplerT"I

7-y- Mewl *w-spee A OafI
Displa
(kopuI

Figue &TaskArditetureDiaram-ruie Cntro Sytem

I
I

Monitor Shaft

CrieControl MUMse

Sto Shaft Rotation..

I S

!

Figure 9. System Architecture Diagram-Cruise Control System.

S~6. Conclusion

| A research effort of developing a Design Structuring method has been presented in this paper. The

i goal is to produce optimal or near optimal system design that satisfies system requirements. We have
discussed terminology, objectives, technique, and an example of Design Structuring.
Currently, we investigate a System Design Structuring methodology based on the ADARTS ap-

proach. The methodology involves system engineering through iteration of software design with

hardware decisions and organizational lessons with respect to SDFs. A set of Design Structuring
criteria according to SDFs (System Design Factors) is researched. A method of optimizing a system
design with respect to SDFs is studied.

A prototype of DESTINATION will be constructed for demonstration. The Design Structuring
component of the prototype will utilize the Design Structuring criteria, the optimization method and

the CASE tools supporting ADA•RTS.

169

7. References

[ADRT88] Hassan Gomaa, "ADARTS-An Ada Based Design Approach for
Real Time Systems, Version 1.0," Software Productivity Consortium
Technical Report, SPC-TR-88021, August 1988.

[DEST] S. L., Howell, C. Nguyen and P. Q. Hwang, "Design Structuring and Al-
location Optimization (DeStinAtiOn): A Front-End Methodology for pro-
totyping Large, Complex, Real-Tune Systems," Proc. Hawaii Internation-
al Conference on System Sciences, IEEE Computer Society Press, Los
Alamistos, CA January 1992, Vol. II, pp. 517-528.

[SDF92] C. Nguyen, S. L. Howell and P. Q. Hwang, "Systems Design Factors,
Version 0.01," Naval Surface Warfare Center, NAVSWC TR-92-XXX,
February 1992.

[HMKD82] W. Harrison, K. Magel, R. Kluczny and A. DeKock, "Applying Soft-
ware Complexity Metrics to Program Maintenance," IEEE Computer
(September 1982), pp. 65-79.

170

171

A Platform for Complex Real-Time Applications

Alexander D. Stoyenko
"Lonnie R. Welch
Phillip Laplantet

Thomas J. Marlowe:
Carlos Amaro

Bo-Chao Cheng
Matthew Harelick

Xue Jin
A. K. Ganesh

Gray Yu

Abstrect

A platform for complex real-time applications is presented. The platform consists of a number
of on- and off-line components: a RISC architecture, a runtime kernel, a generic interconnected
network, a specification and design language, a programming language, compiler, linker, schedula-
bility analyzer, assignment tool, and a graphical user interface. All components adhere to stringent
requirements of predictable real-time computation. The integrated platform has been prototyped
and a successful initial evaluation has taken place. We are now extending the platform to accom-
modate the requirements of two collaborative Navy projects - in task allocation and optimization,
and in component re-engineering.

1 Introduction

The emerging generation of complex real-time applications requires availability of application devel-
opment and execution platforms which integrate a number of traditional and novel components. Es-
sentially, a suitable platform needs to accommodate the inherent complexity, distribution, parallelism,
adaptibility and non-functional requirements (such as time criticalness, fault tolerance, dependability
and security) - characteristics not necessarily found in older real-time applications - of these new
applications. In this paper, we report briefly on such a platform, that we have designed and prototyped
at New Jersey Institute of Technology's Real-Time Computing Laboratory.

WVe recognize the following steps - and thus the corresponding need for a platform component - in
the development and execution lifetime of a complex real-time application. Initially, an application is
specified and then designed, using a visual specification and design language. Next, the application is
constructed and/or synthesized from pre-existing, reusable components. The pre-existing components
are selected on the basis of their interfaces. These components are managed through the Component

"*Stoyenko, Welch, Amauo, Cheng, Harelick, Ganesh, Jin, Younis, and Yu are with The Real-Time Computing Labo-
ratory, Department of Computer and Information Science, New Jersey Institute of Technology, Newark, NJ 07102 USA,
E-mal- alexOvulcaa.njit.edu or welchOvienna.njit.edu. This work is supported in part by the U.S. ONR Grant N00014-
92-J-1367, by the U.S. Army Grant DAAL03-91-C-0034, by the NATO Grant CRG-90-1077, by the U.S. NSWC Grant
N60921-93-M-1912, by the AT&T UEDP Grant 91-134, and by the NJIT SBR Grants 421250 and 421290

tDepartment of Mathematics and Computer Science, Fairleigh Dickinson University, Madison, NJ, I-
plute~fdumad.fdu.edu, also associate member of NJIT RTCL

SDepartment of Mathematics and Computer Science, Seton Hall University, South Orange, NJ 07079, mar-
lowe4ks.rutgers.edu, also associate member of NJIT RTCL

172

Manager, not discussed here but presented in [4]. New components are developed through translation
of the specification and design language as well as naturally through programming in a high-level lan-
guage. The resulting application program is consequently compiled piece-by-piece down to executable
form, and then linked. During compilation, essential timing and other non-functional information
is extracted (using the front-end function of a schedulability analyzer). A Directed Acyclic Graph
(DAG) of software application components - processes and objects - is constructed, for display and
further analysis. The DAG is consequently analyzed by the assignment analysis tool, and the software
components are assigned to processing elements (PEs) of the generic interconnected network. Next,
the components are loaded and the application commences execution. Specifically, each PE runs a
copy of a runtim6 kernel, which executes instructions of the software components and initiates com-
munication. The network (with its own kernel) processes communication messages. The application
and the platform - or more specifically, the DAG and the interconnected network of PEs - are
displayed graphically in windows. In addition, the performance of the application and the platform
is monitored and displayed. Finally, there is a command window which works in conjunction with
other windows, and allows the user to re-assign components, change performance monitor attributes,
provide application data and so forth.

In what follows, we outline each application platform component and summarize relevant current
and future activities.

2 Specification and Design Language

To present multiple functional and non-functional views of complex real-time applications, we have
designed a rigorous specification and design description language RT-Chart. RT-Chart specifications
representation a system as a set of real-time processes, each composed of a set of actions. The first
action of a process is performed at the start of each process activation. Upon completion, the initial
action invokes a successor action, passing some data. Each action requires a set of resources (hardware
or software), which are claimed upon commencement of the action and are released upon completion
of the action. RT-Chart provides a resource algebra for stating the modes in which resources can be
used: (1) may be used concurrently (2) must be used concurrently (3) cannot be used concurrently and
(4) cannot be used concurrently and must be used in a particular order. Additionally, and-gates allow
the specification of parallel actions, and or-gates indicate conditional execution of one among a set of
actions. Furthermore, in RT-Chart, the actions may be hierarchical, to enable macro-level reasoning
and specification. In addition to functionality, timing and parallelism, there are other important
system aspects that RT-Chart allows to be expressed. Security classification levels may be indicated
for information flows, code (actions), resources, levels of hierarchy, and implementation details. To
allow dependability to be dealt with, degree of redundancy or reliability can be specified for actions
or processes. Another aspect of systems is relative criticality, which can also be expressed for actions
and processes.

Currently, RT-CHART is implemented only partially. There is a visual, graphical interactive user
interface, to create and modify RT-CHART specifications. However, the translator from RT-CHART
to RTX or call-DAGs (see Sections 3 and 4) has not yet been completed.

3 High-Level Language

A predictable real-time language RTX has been designed, based on the real-time model of Real-Time
Iruclid [7, 3] applied to the ADT/ADO model of RESOLVE [5, 14]. The resulting language features
abstract data objects, real-time processes and time-bounded constructs. No arbitrarily-long compu-
tation is allowed. Thus, recursion is forbidden, loops are unrollable, and dynamic data operations are
not allowed.

173

One interesting feature of the RTX - which makes accurate timing predictions even more chal-
lenging than in other real-time languages - is that a call in RTX may proceed in parallel with the
caller that made the call until either a control or data dependency forces synchronization or the call
returns. Moreover, since RTX inherits RESOLVE's strict object-orientation, every statement in an
RTX program is in fact either a primitive operation or a call (thus contributing to the complexity of
timing analysis).

4 Compiler, Schedulability Analyzer, DAG Generator and Re-
lated Tdols

A compiler for RTX has been developed. While the compiler supports such interesting features as
generic ADTs, the emphasis on this work *s on supporting real-time features. Consequently, the
compiler operates in an integrated fashion %ith a front-end schedulability analyzer (see below). In
addition to schedulability information and conventional RISC instructions to be executed later (see
Section 7), the compiler also outputs information used by the DAG generator (see below).

A schedulability analyzer operates similarly to the one for Real-Time Euclid [9, 7, 1]. A program
is analyzed for schedulability in two stages. The schedulability analyser consequently consists of two
parts: a partially language-dependent front end and a language-independent back end. The front end
is incorporated into the code emitter, and its task is to extract, on the basis of program structure and
the code being generated, timing information and calling information from each subprogram, process
or object, and to build language-independent program trees. The front end of the analyser does not
estimate interprocess contention. However, it does compute the amount of time individual statements
and subprogram and process bodies take to execute in the absence of calls and contention. These
times, serving as lower bounds on response times, are reported back to the programmer.

The back end of the schedulability analyser is actually a separate, language-independent program.
Its task is to correlate all information gathered and recorded in program trees by the front end, and to
predict guaranteed response times for the entire real time application. To achieve this task, this part
of the analyser maps the program trees onto an instance of a real-time task model, and then computes
the response time guarantees.

The back end of the analyzer employs a potentially exponential time technique - frame superim-
position - to estimate contention accurately. To reduce the problem space frame - in terms of the
number of possible execution paths - that frame superimposition has to consider, we employ program
transformations and resource contention [10], conditional linking [11], and aperiodic process conversion
to periodic (using common techniques such as in [2]). The transformer balances and pads alternate
execution paths in conditional statements, ensuring that regardless of the path taken, timewise both
the execution of the thread in question and the contention the thread generates is the same as in the
case of one original, dominating path. The linker eliminates paths that are infeasible, given logical
relationships among conditional test variables. Restricted resource contention means that arbitrary
contention schemes for resources are reduced to a dominating small number of schemes, at the expense
of some time loss. A typical scheme may force multiple threads contending for the same resource to be
released only after all of them have used the resource. Finally, aperiodic-to-periodic process conversion
involves replacing processes with longer frames (minimal activation separation periods [7]) but other-
wise arbitrary times, with regular (such as periodic or jittery) processes with identical per-activation
resource requirements but tighter frames.

Daggen (the DAG generating tool) translates RTX compiler output into a sequence of numbers used
by the DAG Browser of the Graphical User Interface to draw a Directed Acyclic Graph. The Directed
Acyclic Graph (DAG) extracted by Daggen represents a collection of processes and objects. DAG
edges represent calls from processes or operations of objects to operations of (other) objects. (Thus,
we also refer to this graph as the call-DAG). Since RTX disallows recursion (operation- or object-level),

174

the graph is indeed acyclic. Daggen builds the call-DAG of the application by processing each object
declaration in a top-down recursive fashion beginning with the top level processes. Adjacency lists
are constructed, along with parameters, their directions and other attributes, for each call possibility.
For display purposes, at most a single edge is represented for any two possible nodes.

5 Assignment of Processes and Objects

We have developed and continue improving upon accurate and efficient performance prediction func-
tions for real-time software components (processes and objects) that are being assigned [13, 14, 6] to
processing elements (PEs) in parallel systems and that allow RTX-style asynchronous operation calls.
The functions (1) consider load-balancing, parallelism and deadlines, (2) predict performance on the
basis of projected service rates, and (3) treat PEs and communication links in an integrated manner.

We have undertaken a quantitative evaluation which has demonstrated that the functions perform
quite well [12]. The assignment tool is currently used before execution, to assign processes and objects
to the PEs of our platform (see Section 6). Eventually, the tool will also be used to re-assign processes
and objects dynamically, as the need arises.

6 Processing Elements and Networking

The platform architecture consists of processing elements (PEs) interconnected by a generic network.
Each PE is controlled by a replica of the PE kernel (see Section 7). The PE architecture is currently a
RISC computer based on [14]. While the architecture is mostly conventional, it includes features for ef-
ficient loading, execution and cloning of objects and processes. Furthermore, the architecture is mostly
predictable in its real-timing, in the sense of the architecture in [1]. Potentially unpredictable features
of the architecture - such as dynamic memory allocation and pipelining - are made predictable
by the compiler (which disallows memory allocation past module load, and swaps/pads post-branch
instructions, for instance).

Each PE is equipped with communication ports. There is no limit on the number of PEs in the
system, and we have experimented with a number of topologies (a ring, a bus, a mesh, a hypercube).
"We are building a generic network topology constructor to enable arbitrary interconnection of common
topological structures (e.g. five hypercubes and three rings connected by a bus).

The architecture provides PE and communication link resources. Each resource is assumed to be
schedulable separately, for generality. Every resource has its own queue for requests and is free to
employ any predictable scheduling policy.

7 PE and Network Kernels

"The operating system component of the platform consists of small kernels for PE and network control,
respectively. Each PE is equipped with a replica of the PE kernel, whose tasks include process
scheduling, initiating and receiving messages, and gathering execution information. These functions
are done in a standard fashion, employing common and straightforward decisions such as process
priority inheritance and deadline detection. Moreover, the PE kernel supports both synchronous and
asynchronous calls (see Section 3) - calls inherit caller priority. Both preemptive and non-preemptive
scheduling are supported. The PE kernel allows the user to select synchronous or asynchronous call
mode. The PE kernel passes information on performance statistics and execution progress (as in who
is calling whom) to the graphical user interface (Section 8). Finally, the PE kernel is used to control
the speed of program execution (user-selectable - to enable execution progress at human speed for

175

obser•ation).

The network kernel executes the network, including message transmission, link scheduling, delay
updates (transmission and propagation delays) and other such functions. This kernel too interfaces
with the graphical user interface. Since the design of the architecture has deliberately kept the PEs
and the interconnection (and consequently their kernels) separate, there is a need to maintain common
granularity and value of time. This is currently achieved through a common router for messages and
time keeping. Future implementations are likely to also employ simple and reliable time management,
such as monitoring official time [1], rather than high-overhead, theoretical synchronization protocols.

8 Graphical User Interface

"We have built a graphical user interface (GUI) to display the activities in the system and to accept
commands from the user. The GUI currently consists of the command window, the call-DAG window,
the architecture window and the performance monitoring window.

The command window controls platform and application execution. Through this window, the user
may instruct the platform to load, execute or terminate and application, to (re-)assign a process or
an object (this is done by identifying the command, the object in the call-DAG window and then the
PE in the architecture window - the PE kernel does not currently support this feature), to set the
program execution speed dynamically, and to open the other windows.

The call-DAG window displays an application in its call-DAG form. Using colors, line sickness and
ether display features, the window clearly indicates executing, idle or blocked nodes, calls-in-progress
over edges, and call and return parts of calls. The window displays names or numbers of nodes.

The architecture window displays interconnected PEs. Again using colors, shapes and so forth,
the status of each PE's processor (executing, idle, waiting), its communication ports (idle, sending,
receiving, waiting), and the status of communication links (transmitting, blocked, reserved, idle) is
indicated. Call and return messages are shown. Finally, the user may request to display the portions of
the call-DAG corresponding to the processes and objects - optionally with their call-DAG neighbors
- to be displayed for any PE.

Finally, the performance window displays sets of bar graphs and an index table, each with timing
information on processes (and objects and their operations) that run to completion. Specifically, the
statistics displayed (and requested by the user through this window) include observed, predicted (by
the assignment tool or the schedulability analyzer) and historical response times, laxities, frames and
deadlines, and the deviations among the predicted and observed sets of times. Information on the
last termination for every process or object is kept and displayed upon request, as is information on
the last N terminations, for a user-specified N. The index table maps process or object numbers to
declared names and their associated frames and deadlines, if applicable.

9 State of the Platform, Current and Future Activities

Our current prototype has been implemented and running since Spring'93. PE and network kernels,
the router and the GUI are run as Unixi processes that communicate via sockets. The GUI and
RT-CHART windows run under X (X-view and Motif). The PE kernel uses shortest-latency-first with
inheritance to schedule processes, and the two kernels use FIFO for link and message scheduling. The
time granularity is kept consistent (between the PEs and the network) by the router (that also keeps
the master clock).

We are currently building a graphical DAG constructor to enable rapid prototyping of complex

'Unix is a trademark of the AT&T Bell Laboratories

176

applications. The constructor will fill in cycle-burners in place of real instructions, so that the resulting
symbolic application will exhibit the same desired timing and other non-functional behavior as the
ultimate real application. Now that we have a "proof-of-concept" prototype, we are about to undertake
in a thorough re-design and re-engineering of the platform. One of our tasks in re-design is to facilitate
the use of common languages, such as Ada9X, in the spirit of real-time execution [8] and while enabling
re-use, re-engineering and other desirable features.

Finally, we are engaged in two collaborative projects with NSWC: one in task allocation and
optimization, and the other in software component re-engineering. The platform is used in both
projects and we have begun extending it to meet the NSWC requirements.

W1,e are indebted to the Office of Naval Research and the Naval Surface Warfare Center (White
Oak and Dahigren) for making this project possible - and especially for facilitating what has now
become a productive, collaborative effort. We would like to thank all other members of the Real-Time
Computing Laboratory - past and present, regular and visitors - who have contributed immensely
to the creative and professional environment within the Lab.

References

[1] W. A. Halang, A. D. Stoyenko, Constructing Predictable Real Time Systems, Kluwer Academic Publishers, August
199).

•2] A. K. Mok, "The Design of Real-Time Programming Systems Based on Process Models", Proceedings of the IEEE
1984 Real-Time Systems Symposium, December 1984, pp. 5-17.

[3] E. Kligerman, A. D. Stoyenko, "Real-Timne Euclid: A Language for Reliable Real-Time Systems," IEEE Transac-
tions on Software Engineering, Vol. SE-12, No. 9, pp. 940-949, September 1986.

[4] W. Rossak, A.D. Stoyenko and L. Rt. Welch, "The Component Manager: A Hybrid Reuse Tool Supporting Inter-
active and Automated Retrieval of Software Components," Proceedings of 1992 Complez Systems Design Synthesis
Technology Workshop, Naval Surface Warfare Center, Silver Spring, Maryland, July 1992.

[5] M. Sitaraman, L. R. Welch, D. E. Harms, "Influences of a Comnponent-Based Industry on the Expression of Spec-
ifications of Reusable Software," The International Journal of Software Engineering and Knowledge Engineering,
June 1993.

[6] fL A. Steigerwald and L. R. Welch, "Reusable Component Retrieval for Real-Time Applications," Proceedings of
IEEE Workshop on Real- Time Applications, N. Y., N. Y., May 1993.

[7] A. D. Stoyenko, A Real-Time Language with A Schedulability Analyzer, Ph.D. Thesis, Department of Computer
Science, University of Toronto, 1987.

[8] A. D. Stoyenko, T. Baker, "Real-Time Schedulability-Analyzable Mechanisms in Ada9X," Proceedings of the IEEE,
January 1994.

[9] A. D. Stoyenko, V. C. Hamacher, R. C. Holt, "Analyzing Hard-Real-Time Programs for Guaranteed Schedulability,"
IEEE Transactions on Software Engineering, pp. 737-750, SE-17, No. 8, August 1991.

[10] A. D. Stoyenko, T. J. Marlowe, Polynomial-Time Transformations and Schedulability Analysis of Parallel Real-
Time Programs with Restricted Resource Contention, Journal of Real- Time Systems, Volume 4, Number 4, Fall
1992.

[11] A. D. Stoyenko, T. J. Marlowe, W. A. Halang, M. Younis, "Enabling Efficient Schedulability Analysis through
Conditional Linking and Program Transformations,* Control Engineering Practice, Volume 1, Number 1, 1993.

[12] A. D. Stoyenko, L. R. Welch, "Response Time Prediction in Object-Based, Parallel Embedded Systems,* to appear
in Euromicro Journal, 1993.

113] L. R. Welch, A. D. Stoyenko and S. Chen, "Assignment of ADT Modules with Random Neural Networks," The
Hawaii International Conference on System Sciences, IEEE, Jan. 1993.

[14] L. R. Welch, Architectural Support for, and Parallel Execution of, Programs Constructed from Reusable Software
Components, Ph.D. thesis, Department of Computer Science, The Ohio State University, December 1990.

177

GUI"
S.

iti

MI Im

S.... • ,
t *

" I

_...o"

S...•..' ;.
",,7 IV ",GUI

Lsms

Kernel Unit

i. •'-..• .

Network Unit

P% 3 htm Sh% redt

Accptr:* 178to

A Testbed for Prototyping Distributed and Fault-Tolerant Protocols

Farnam Jahanian
IBM T. J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

e-mail: farnam@watson.ibm.com
tel: (914) 784-7498

Ragunathan Rajkumar
Software Engineering Institute
Carnegie Mellon University

Pittsburgh, PA 15213
e-mail: rr@sei.cmu.edu

John J. Turek
IBM T. J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598
e-mail: jjt@watson.ibm.com

1 Introduction

The trend towards collections of powerful processors connected by a communication network has motivated the devel-
opment of a number of distributed operating systems [3, 7, 8, 111 and many paradigms for building distributed applications
11, 2.4,6. 9, 10]. The shift from centralized large computer systems to closely-coupled clusters of processor which provide
the illusion of a single system to the clients has been accelerated partially by the introduction of inexpensive micro-processors
and dense memory chips. However, the complexity of software design, development, testing and integration of distributed
systems poses a significant challenge particularly for mission-critical applications. Strict timing constraints and availability
requirements often introduce ddditional complexity in the design of mission-critical distributed systems.

This paper introduces a testbed for prototyping fault-tolerant distributed systems. The testbed is structured as a set of
services layered between the operating system kernel and the application software. The primary objectives of the testbed
aem a) to allow development of complex mission-critical applications from a collection of building blocks with well-defined
APIs, and b) to build the infrastructure for experimenting with different distributed protocols.

2 Building Blocks and Common API

We uke the term cluster to refer to a collection of (perhaps) homogeneous processors connected by a communication
network that functions as a server to external clients. The term server is used to denote a collection of processes (on the

179

cluster of processors) that provide the illusion of a single system to the clients. A server may be a command & control

system, a real-time database machine, or an automated system for manufacturing and process cpntrol.' Such clusters are
closely-coupled in the sense that a server is seen as a single system to the clients. The server software running on the
processors hides the distribution and replication of the resources in the cluster. The client's view is defined by the server
interface. One can view a closely-coupled server as a special case of distributed systems in which the collection of server
software running on the processors makes the distribution of resources transparent to the clients.

Building and managing a reliable closely-coupled cluster that functions as a single coherent system is complicated by
several factors:

"* Asynchronous nature of communication (including random communication delay)

"* Distribution/replication of resources across the system

"* Changes to the set of processors that comprise the cluster due to a processor failing, leaving or rejoining the system.

In mission-critical systems, other requirements introduce additional complexity:

* Strict timing constraints imposed on response time of the system

* Dependability requirements the delivery of certain services

* Interoperabilityin an open system environment

The primary objective of this work is to provide a testbed for experimenting with primitives for building dependable
servers. This is done by providing a collection of building blocks with well-defined APIs.

3 Overview of Testbed

The testbed consists of a collection of protocols for managing replicated and distributed resources in a system. It consists
of six software layers, each exporting a well-defined interface to the other layers or to applications that are built on top of
the testbed. Figure I illustrates the software layers in the testbed. Each software layer, referred to as a service, supports one
or more protocols. A brief description of each service layer follows:

Smulticast communication service: provides a reliable datagram communication service for sending a message to a
collection of destinations. This service allows the exploitation of available communication protocols (e.g., Netbios
vs. UDP) and possible hardware support (e.g., hardware broadcast facility) on a given system without exposing the

implementationto the higher layer services.

* processor membership and monitoring service: provides a consistent view of the operational status of a group
of processors in the presence of processorlprocess failures/joins and communication failures. Three membership
protocols with varying degrees of consistency in the views of the members are supported.

* clock synchronization service: provides a bound on the deviation between logical clocks on processors in the presence
of hardware clock drifts and failures.

* reliable naming service: provides a reliable service mapping the name of an object to a list of processors in the

system. This layer supports multiple namespaces.

180

I

Replication Cache Service Fault-Tolerant

Service Service Failure Synchronization

Detector Service

Reliable Naming Service

Processor Membership & Monitoring

f•Multicast Communication Service CokSn
SService

Figure 1: The Software Layers of the Testbed.

e distributedcache service: provides shared/exclusive access to remote objects with local caching. This layer supports
multiple coherency protocols including cache Invalidation and write-through policies.

* replication service: provides a mechanism for maintaining multiple copies of objects in a cluster. This layer supports
several replication protocols with different consistency semantics for updating replicas.

* distributed synchmdzation service: provides fault-tolerant and scalable synchronization protocols for serializing
access to shared/exclusive resources. The distributed synchronization service can recover from the failure of a lock
holder/coordinator and communication failures.

* service failure detector provides notification/query service for monitoring status changes of a collection of subsys-
tems grouped together as a server. A status change to a group can occur because of a subsystem failure or an update
to an application-defined status field.

4 Design Goals

"lTe primary design goals of the testbed are application independence, portability to different operating systems and
scalability to a large number of processors in a cluster.

181

Applcation Iadependexce"rnabilily:

"The current design and implementation of the services in the test•ed ensures independence fiom the applications. The
services are generic and are common to a range of servers that can be built on a cluster. Each software layer has an application
programming interface. The implementation can be ported easily to other UNIX-lke operating systems. I Since a large
portion of the operating system dependencies are encapsulated in a communication layer, these services are easily portable
to other workstation operating systems such as OS/2 and Mach. The layered design of the services allows experimenting
with several protocols for each layer without rewriting a substantial part of the code. For example, in the current version of
the software, three processor group membership protocols ar supported (as described in [5]). The implementation of each
protocol consists of less than 1000 additional lines of code in C, while the surrounding 5000 lines in the membership layer
are untouched.

Perfonnace:I

Analysis and preliminary experimental results indicate that the current protocols in the testbed are scalable to clusters
with moderate number of nodes. The current prototype is running in a cluster environment with 32 nodes. The layered
design enhances performance by taking advantage of the hardware architecture of the cluster. For example, the membership
and the replication protocols can take advantage of hardware multicast support if available in a cluster. Similarly, the
existence of a physical shared memory among a set of processors would allow a more efficient implementation of certain
protocolfs and avoid the need for some protocols. With the exception of the processor membership service, which is the
layer gluing all others together, there is no overhead for unused services. Since many of the protocols in the testbed are
intended for managing distributed resources and maintaining consistent copies of replicas, the scalability of these protocols
is an important goal. Our approach to meeting this goal is discussed next.

Scalabiliy of distributedprotocols:

Distribution or replication of resources (or objects) frequently leads to performance bottlenecks in a loosely-coupled
cluster. Local caching and accessing of shared objects is used to enhance performance, while cache coherency protocols are
used to maintain object consistency. The protocols are designed for cases in which objects are replicated a small number of
times, which enhances availability without compromising performance. In particular, we combine the replication protocol
with a caching protocol completely transparent to the user of the service. These performance-driven tradeoffs allow the
abstraction of a single reliable and coherent system to be scalable to a large number of processors, without a serious adverse
Impact on availability. Since our design philosophy is to replicate a small (fewer than 4) number of replicas for any object,
this allows us to optimize the replication protocols. The obvious disadvantage of a small number of replicas is that the
system may become unavailable in the event of multiple simultaneous failures, but such an occurrence is relatively rare in
practice.

Meaker consistency semantics.

An important objective is to provide several protocols to satisfy different consistency requirements on multiple copies of
objects. In many cases, updates to a replicated object must be atomic. For example, multiplecopies of a system configuration
must be kept consistent such that data integrity is ensured in the presence of failures. However, the consistency requirements
of other objects, such as sensor data, are much less stringent, and a recent version of the object can be considered to be a
good approximation of the latest version of the object. This is particularly true of dynamic attributes of an object which
wre updated only at periodic intervals. For example, if the load on a machine is queried, a recent value may be sufficient
as opposed to the latest snapshot. Better performance can be achieved when the consistency requirements of an object can
be relaxed. We are now experimenting with the notion of periodic replication servers for maintaining replicated objects in

IjUMM is a registered irademask of AT&T Bell Labs.

182

I tine-altical applications with strict timing constraints.

s Coeuding Remrks

The current Implementation of this testbed has been built on a network of RISC SystemlO processors running AIX.
2 The modularity of its design allows portability to other workstation OS with relative ease. The corrent implementation
bas been built on several communication transport layers including the UDP datagram service, a multicast communication
service ad the NetBios datagram service. We are also experimenting with a transport layer on a very fast point-to-point

nco unicatio network.

The software layers in this testbed are divided into eight distinct layers residing between the application and the operating
system kernel. Each layer consists of one or more distributed protocols. Furthermore, an application programming interface
cleanly deftnes the fmnctions provided by each layer. The layered approach to structuring the software services has allowed
us to experiment with different protocols and to support different semantics for a service in each layer.

Thus far this work has been focused mostly on asynchronous distributed protocol. With the exception of a synchronized
clock service and the periodic replication service, the protocol in the testbed provide no hard real-time guarantees. We
are currently investigatinj a variation of the proposed software architecture tailored as a testbed for experimenting inI time-critical systems.

Refemeces

1 [1] K.P. Birman. The process group approach to reliable distributedcomputing. Technical Report TR 91-1216, Department
of Computer Science. Cornell University, July 199 1.

[2] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM 7)ansactions on Computer Systens,

2(l):39-59, February 1984.

13] D. R. Cheriton. The v distributed system. Commnwrcatlons ofthe ACM, 31(3):314-333, March 1988.

[4] F. Cristlan and R. Dancey. Fault-tolerance in the advanced automation system. Technical Report RJ7424, IBM
Almaden Research Cent, April1990.

15] F. Jahanlui and W. L. Moran Jr. Strong, weak and hybrid group membership. In Workshop on Replicated DataI Managemew II, Nov 1992.

16] B. lskov and R. Scheifler. Guardians and actions: Linguistic support for robust, distributed programs. ACM
7asaacioas on .rogramning Languages and Systems, 3(3):381-404, July 1983.

7] J. K. Ousterhon, A. R. OCerenson, F. Douglis, M. N. Nelson, and B. B. Welch. The sprite network operating system.

Compuer, 21(2):23-36, February 1988.

[8] X. Rozier and et al. Chorus distributed operating systems. Compuing Systems, 1(4), 1988.

[9] S. K. Shrlvastava, G. N. Dixon, and G. D. Pafrington. An overview of the ujuna distributed programming system.
IEME Software. pages 66-72, January 1991.

2RISC SWM and AIX me &ademiks of IBM Copotn

1 183

[10] A. Spector. Distributed transactions for reliable systems. In Pmceedings 10h ACM Symposium on Operating Systems

Principles, pages 127-146, Orcas Island, 1985. ACM SIGOPS.

[11] A. S. Tanenbaum, R. van Renesse, H. van Staveren, S. Mullender, G. Sharp, and G. van Rossum. Experiences with
the amoeba distributed operating system. Communications of the ACM, 33(12):46-63, December 1990.

I

I

I

184

ARCHITECTURAL SYNTHESIS OF

MISSION-CRITICAL COMPUTING SYSTEMS

Raed Alqadi Parameswaran Ramanathan

Department of Electrical and Computer Engineering
University of Wisconsin-Madison

Madison, WI 53706-1691.
parmeshOece.wisc.edu, (608) 263-0557

I ABSTRACT

The complexity of mission-critical computer systems has grown rapidly in recent years. As a
result, it is no longer possible to investigate different design options without the assistance of
computer-aided (CAD) tools. In this paper, we briefly describe a synthesis system, called
SHARMA, that, is being developed at the University of Wisconsin, Madison. SHARMA
(Synthesis of Heterogenous Architecture for Real-time Mission-critical Applications) is a
set of design tools for architectural synthesis of computer controllers for mission-critical
applications.

1 Introduction

i A mission-critical application is comprised of several cooperating tasks. Each task may
have constraints such as precedence, release time, deadline, resources, performance, and
reliability. For instance, in a surface ship radar application [2], an incoming missile must
be identified within 0.2 seconds of its detection. If necessary, intercept missiles must be en-
gaged within 5 seconds after detection, and launched within 0.5 seconds within engagement.

I Failure to meet such timing constraints may have catastrophic consequences.

One way of meeting these constraints is to make use of a distributed computing system,
which is a set of processors/nodes interconnected by means of a communication network.

SDesigning such a system involves: (i) choosing a set of building blocks such as processors,
interconnects and I/O interfaces, and (ii) mapping the tasks in the application onto these
building blocks. Not all designs using these building blocks will satisfy the constraints of
the application. Identifying designs which satisfy the constraints is very difficult due to the
large number of alternatives that can be constructed using the building blocks. Computer-
aided tools can simplify the identification of feasible designs by facilitating the search and
evaluation of several alternatives. Presented below is an outline of an integrated set of tools,
called SHARMA, for identifying feasible designs.

I t 5.

I
JONb

q •lelP h2: PWWd=m

10 30 so .

- r" "I

1r 19 e e-t
- ~ -W 3! - J

a~1 20 1____ 1 2

-F4 9 0-

Figure 1: Example of a real-time application

2 Overview of SHARMA

SHARMA is a set of tools for synthesizing heterogeneous computer systems for real-
time mission-critical applications. It is comprised of two main modules: a snmthesizer and
a scheduler. The synthesizer is responsible for selecting a set of modules from given build-
ing block components. The building block components may include processors of different
speeds, sensors, actuators, interconnects, I/0 interfaces, etc. The scheduler is responsible
for verifying that the constraints of the application can be satisfied using the selected build-
ing block components. Since the -components may have different costs, the main objective
of SHARMA is to identify a low cost architecture that can meet the constraints of the
application.

The application is specified to the tools as an annotated directed acyclic graph. The
vertices of the graph represent the tasks and the edges represent the precedence constraints.
Each vertex is annotated with the constraints of the corresponding task such as its compu-
tational requirement, release time, deadline, and a set of the required resources. Each edge
is annotated with the amount of information exchanged between the corresponding pair of
tasks. For example, consider the application in Figure 1. The application is comprised of
three periodic jobs with periods 30, 90, and 45, respectively. Jobs 1 and 3 have only one
task whereas Job 2 has six tasks. The figure shows the precedence constraints among all
the tasks that must complete in the time interval 0 to 90 (i.e., the least common multiple
of the three periods 30, 90, and 45). Note that, the task graph is also annotated with a

186

I-

S~16"

FeF
schl" ~a~

Figure 2: Block Diagram of the SHARMA system

table which specifies the computation requirements, the release time, the deadlines, and a
list of processor types on which the tasks can execute.

In addition to the application, SHARMA is provided with a library of resources and
building block c6mponents available for synthesizing a suitable architecture. The cost and
performance is also usually specified for each component. From these inputs, the CAD tools
in SHARMA choose suitable components, design an interconnection between them, map the
real-time tasks onto the components, and identify a schedule that meets the constraints of
the application.

To develop the tools in SHARMA, the synthesis process has been split into four major
steps: module selection, interconnect optimization, task scheduling, and message scheduling.
Each of he steps is being implemented as a separate CAD tool which interacts with the
other tools to synthesize the desired system (see Figure 2). Presented below is a brief
description of the approach used in these CAD tools.

2.1 Module Selection

The designer specifies the set of resources required for each task. For each resource,
the designer also specifies a library of different types of the resource. These types differ
in performance and cost. For example, a processor design library may contain a 20 MIPS
processor for $20, a 30 MIPS processor for $40, and a 40 MIPS processors for $60. Module
selection is the process of selecting the types and the number of units of each resource type
required to satisfy the constraints of the application. The current version of our module
selection tool handles multiple types of one resource (e.g. processor). Extensions which can
handle multiple types of more than one resource are currently in progress.

Our module selection algorithm consists of two major steps. In the first step, an ex-
tension of the lower bound analysis in [1) is used to estimate the number of units of each
resource type and the number of communication channels required to satisfy the constraints.
Using these estimates, the algorithm constructs homogeneous architectures, one for each
type, and then invokes the task and message scheduler to determine whether the constraints

187

I

can be satisfied. Once feasible solutions have been identified, the second step reduces the
cost of the architectures by transforming them into heterogeneous systems. This is accom-
plished by recursively replacing the higher cost units by lower cost units until it is no longer
possible to satisfy the constraints of the application. The lowest cost system which satisfies
all constraints ip chosen as the final architecture.

2.2 Interconnect Optimization

There are many different types of interconnect components such as buses, point-to-point
links, and crossbars. The choice of interconnects should be based on the communication
patterns and the communication delay constraints of the application which in turn depend
on the allocation and scheduling of the tasks in the application. However, since allocation
and scheduling of tasks cannot be done without the knowledge of the interconnection,
choosing the optimal set of interconnects for a given set of building block components is
very difficult, if not impossible.

The current version of our interconnect optimization tools is limited to selecting one
or more multiple access channels. A lower bound analysis [1] is first used to estimate the
number of channels of a given type that is required to meet the communication needs of
the application. A recursive technique is then used to lower the cost of the interconnects.
This technique is similar to the one used in the module selection step.

2.3 Task Scheduler

Several algorithms have been reported in the literature for scheduling tasks in real
time applications [3-6]. The main problem with most of these algorithms is that they are
restricted to homogeneous processing units. Since we are dealing with a heterogeneous sys-
tem, a new algorithm was developed for scheduling and allocating heterogeneous processing
units. Currently, the algorithm assumes that the interconnection network is a set of mul-
tiple access channels where each processing unit can access any channel. Other types of
interconnection networks will be dealt with in future.

The module selection and interconnect optimization steps provide the task scheduler an
architecture on which the scheduling is to be performed. The task scheduler is an iterative
list scheduling algorithm that repeatedly invokes the message scheduler to ensure that the
communication network can meet the timing requirements of the synthesized schedule. The
basic idea of our task scheduling algorithm can be explained as follows. Each task is initially
assigned to a processor unit on which it can execute. This assignment specifies an execution
time and the latest start time for each task. The assignment is then discarded and a new
assignment and schedule is generated as explained below.

A task is considered ready for scheduling when all its predecessors have completed their
execution. The ready tasks are ordered according to their latest start time. The ready task
with the least latest start time is first considered for scheduling. The task is scheduled on the
processor on which it can complete the earliest. To identify this earliest completion time,

188

all possible assignments for the task are considered. Each possible assignment generates
a different set of predecessor messages that have to be scheduled on the communication
network. For each possible assignment, the message scheduler is invoked to determine the
earliest completion time of all the predecessor messages of the task under consideration. The
least schedulable time after all predecessor messages have arrived plus the corresponding
execution time for the task is the earliest completion time of the task on a given processor.
The minimum earliest completion time over all possible processors is the time at which the
task is scheduled; the task is scheduled on the corresponding processor. After a task is
scheduled, the ready list is updated to possibly include the immediate successors of the just
scheduled task.

The algorithm continues in this fashion until all tasks have been tentatively scheduled. If
some tasks do not meet their deadlines, then the whole process is repeated after recomputing
the latest start time of all tasks based on the new processor assignment just generated. Note
that, a new assignment results in a different execution time and different communication
pattern for some tasks. Consequently, there is a change in the latest completion time of
some tasks, which in turn, changes the priority order among the tasks in the next iteration.
The algorithm terminates either when a feasible schedule is identified or when a designer
specified iteration limit is exceeded.

2.4 Message Scheduler

The message scheduler is invoked by the task scheduler to determine the earliest com-
pletion time of all predecessor messages of a given task. The message scheduler orders the
predecessor messages according to their earliest start times. The messages are then con-
sidered for scheduling in the increasing order of the earliest start times. Each message is
scheduled on the communication channel in which it can complete the earliest. To deter-
mine the earliest completion time, each channel is individually considered and the message
is scheduled at the earliest possible time on that channel. The completion time on a chan-
nel is the earliest possible time plus the time required for communication. The message is
finally scheduled on the channel with the minimum earliest completion time.

3 Preliminary Results

In this section, we present the results generated by the tools in SHARMA for two
example real-time applications. The first example is the one shown in Figure 1 except that
only two types of processors are considered. It is also assumed all tasks can run on either
type of processor. Processor of type 1 has a normalized performance of 1 computation per
time unit whereas processor type 2 has a normalized performed of 0.5 computations per time
unit. The cost of a processor of type 1 is assumed to be 4 and that of a processor of type
2 is assumed to be 1. Further, it is assumed that the cost of a communication link is 0.5.
Figure 3(a) shows a homogeneous architecture and the corresponding schedule *hich meets
the constraints of the application. In this architecture, there are two processors of type 1
and no processor of type 2. The overall cost of this architecture is 8.5. Figure 3(b) shows

189

Type I TypeIm

(a) Homogeneous architecture

Type- Type2 i f

- . m I ?i Im =

(b) Heterogeneous architecture

Fligure 3: Architectures synthesized by SHARMA for the example application in Figure 1

190

io S

_ _ _ _ _ _-. -1

- ---o

Figure 4: Architecture synthesized by SHARMA for a large example application

a heterogeneous ,architecture and the corresponding schedule which meets the constraints
of the application. In this architecture, there is one processor of type 1 and two processors
of type 2. Note that, the overall cost of this architecture is only 6.5 as compared to 8.5 for
the homogeneous architecture.

The second example presented here is an application with 100 tasks. The precedence
relation between the tasks were generated randomly. The tasks with no successors were
assigned deadlines equal to the length of their critical paths on the slowest processor. The
design library used in the synthesis processors had three types of processors with normalized
performance of 1.0, 1.2, and 1.5, and normalized cost of 1.0, 1.3, and 2.0, respectively. The
synthesized heterogeneous system and the corresponding feasible schedule generated by
the tools in SHARMA are shown in Figure 4. Note that, the synthesis design has three
processors of type 2 and two processors of type 3. Also, three communication channels were
required to meet the constraints of the application.

4 Conclusion

We presented an overview of the set of CAD tools being developed at the University of
Wisconsin-Madison for synthesizing heterogeneous computer systems for real-time mission-
critical applications. Preliminary results obtained by these tools were also presented. Future
work includes enhancing these tools and evaluating their performance on other applications.

References

[1] M. A. Al-Mouhammed, "Lower bound on the number of processors and time for schedul-
ing precedence graphs with communication costs," IEEE Transactions on Software En-
gineering, vol. 16, no. 12, pp. 1390-1401, December 1990.

191

[2] J. J. Molini, S. K. Maimon, and P. H. Watson, "Real-time system scenarios," in Pro-
ceedings of Real-Time Systems Symposium, pp. 214-225, December 1990.

[3] K. Ramamritham, "Allocation and scheduling of complex periodic tasks," in Proceedings
of International Conference on Distributed Computing Systems, pp. 108-115, May 1990.

[4] J. P. C. Verhoosel, E. J. Luit, and D. K. Hammer, "A static scheduling algorithm for
distributed hard real-time systems," Real-Time Systems, vol. 3, no. 3, pp. 227-246,
September 1991.

[5] J. Xu and D. L. Parnas, "Scheduling processes with release times, deadlines, precedence
and exclusion relations," IEEE Transactions on Software Engineering, vol. 16, no. 3,
pp. 360-369, March 1990.

[6] W. Zhao, K. Ramamritham, and J. A. Stankovic, "Scheduling tasks with resource re-
quirements in hard real-time systems," IEEE Transactions on Software Engineering,
vol. SE-13, no. 5, pp. 564-577, May 1987.

192

An Intelligent R.a-Thne System Assessment Tool

Ed Andert Jr. Larry Peters
coceptual Software Systems, Inc. Software Consultants Inteational UAd.

P.O. Box 727, Yoba Linda, CA 92686 P.O. Box 5712, Kent, WA 98031

AUBS7LACT
A crudal requirement of many Navy systems is the need to perform critical functions within

specfied real-m deadlne during stm situations Current system design support medthdlgies and
tools are insuffident for the complexity encountered in complex real-time system development. Support
techniques nadepately communica requirements and do not assist in the complex task of dentifying
ciical components and problem areas.

This paper discusses a prototype Intelligent Real-lime System Assessment Tool (ExpeR/1) that
Itegrates reqnrements spefication, system design, design analysis, and design evaluation. It provides th
diem and engineer with an automated tool that Identifies critical and problem areas in a design and
suggests improvements. The tool approach utilizes an innovative combination of expert system analysis,
graphical system design, and design modelgsmlaon The project leverages off of the commercial
PIOlEM Tm graplical system design diaramm and simulation tool

INMODUCTION
The ExpeRfl tool performs a variety of functions. The functions of the system are segmented into

the following categories:
10 Requirements sectfication - allows the specification of requirements through an expandable menu system.

Requirement details are specified in a template that allows linkage to design elements.
u Design performance andproblem analysis - is made up of performance analysis, critical component

identification, and problem analysis. Performance analysis includes a time criticality factor/strategy.
Critical component identification includes time focus factor, critical path analysis, and critical stat
analysis. Problem analysis consists of condition search and rule-based analysis.

O Problem and critical component correction assistance - provides assistance for problems and critical areas
identified by the design performance, critical component, and problem analysis modules. An expert system
knowledge base is used to designate appropriate designer assistance.

13 Graphical design and simuation - allows system developers to use a graphical design diagram and
simulation tool. This component is based on ProTEM advanced Petri-net-based commercial software.

0 Automated conversion of DFDs and compatible design diagrams to ProTEM Petri nets - gives compatibility
with complementary system design methodologies.

O Design quality evaluation - provides metrics for the evaluation of system designs. The analysis techniques
include behavior analysis, resource loading, and weighted/combinatorial factors.

APPROACH
Current complex real-time systems development methods, and the computer-aided design tools

supporting they rely heavily on an informal and Inaccurate process for communicating requirements
among the client, developing conriactor, user, and contracting authority, Tiis has resulted in systems
whose perfornmnce is inconsistent with requirements and which require expensive revisions late in the
development life cycle.

Researchers that have noted the inadequacy of curnt tools for complex system development have
suggested second generation metaCASE tools that capture requirements, simulate system designs, and
advise designers on-line]Forte 92]. The Intelligent Real-lime System Assessment Tool (ExpeR/T)
described here addresses these needs. The tool is designed to address the factors that contribute to complex
system development problems. It also has the flexi'bity to address new problem areas as they are
encoumered. ExpeRfr provides an integrated means of defirnn, designing and analyzing complex real-
time systems which incorporates formal medtods, informal methods, evaluation schemes, and engineering
experience. But more importantly, it provides the client and engineer with suggested improvement for

193

An Intelligent Real-Time System Assessment Tool Andert & Pets

detecting problems with a system model. One of ExpeRfls primary objectives is to aid in the identification
of critical aras early in the development life cycle to provide a strategic advantage to both dlit and

ExpedR/s larger capability set is the result of an innovative combination of methods, techniques
and concepts which are currently treated in the tecmical literature as being disjoint and separate. For
example, software structured analysis through data flow diagrams (DFDs) and compatible resemtations
encapsulated in CASE tools, systems analysis using a variety of formalized tecliniues, and requirements
specification are all treated as disjoint concers ExpeR/T combines these concepts through integrated
Fzglish-like requiremn specification, graphical system design, design analysis, and design modebn
simulation. It enables egneers to realize their full potential by assisting them in focusing their attention
on those aspects of system definition, analysis and design for which human beings are most well equipped.
that is, the solution of poorly structured, poorly understood problems. It provides an objective means of
evaluating these solutions by identifying and quantifying critical areas, as well as suggesting improvements.

Requkements Specification
The requirements component allows selection of "factors" from a menu. Selecting a factor from

the menu leads to a list sub-factors allowing furthr selection, etc. This hierarchy is demonstrated in Figure
1. The taxonomy of factors and subfactors is essentially derived from those defined in [Nguyen 92].

Details for a subfactor can be defined using ,
a "template" in the spirit of [Nguyen 921, but mare
with a looser format. This template also allows UAM
definition of a connection to design items (iLe. Petri- PhyukeMmnb

net transitions) as shown in Table 1. For example, if CA"t

a requirements function is defined as beamformer, N-

then the performance criteria of 23 beams per second T,
can be mapped into the group of Petri-net design
diagram items that implement the beam former. ai
Potentially, the Petri-net model can generate an Eý

actual beams per second performance number from NOW
the group of design items fulfilling the requirement Figure 1: Requirements taxonomy hierarchy example
(given a set of input circumstances). The actual
performance can then be compared to the specified beams per second which generates a performance
metric. If the function is defined as "system" signifymg the enti system, then the overall Petri-net model
would be used to generate performance numbers.

Nwe Reliability
Fumcion: beam fonner

Type&: Numeic
Ramg >0
Un Seconds

Measm Mean time between fadlu (MTBF)
Cmonction to Design: Transition XY. Transition XYZ

Additional: Rationade - lfe aitical finction

Table 1: Requirement subfactor detail template

The ExpeR/T program is driven by a menu user-interface. The level l'menu is shown in Figure 2.
Submenus to the Requirements option successively proceed down the requirements subfactor hierarchy.

Performance Analysis

The approach for performance analysis in ExpeRfT allows definition of performance
characteristics for design components (transitions) in Petri-net design diagrams. Specification of
performance characteristics for r•quirement factors/subfactors are also allowed. At some point in the

194

An Intelligent Real-Time System Assesuneat Tool Andert & Peters

system development process the designer can connect requirement functions to Petri-net transitions. 7be
pelformance analysis component then takes the performance model generated by the Peal-net and compares
it to the required performance for the appropriate function.

An expert system rule set in the _ _ _ Flamm_ _

lrftn n a s analysis component analyzes the RU Re.. .. Aunaysis Convert
relevance and criticality of the model analysis - peRqft, Os ,
deviations frm the specified perormancea
rmurmnens These rules identify deviations that ,OPOM I .
indicate important problems and report them as P -•oessholcow.

alerts to the user. For example a large set of inputs Cod
might be applied to the Petri-net and in some SOA1•m
outlying cases, 1% total, respolse time requiremens AddM4 Rom
cannot be me. It this case a rule can specify that
the user only be notified in a "warning" in a detailed Figure 2: Level I menu with pulled-down level 2 menu.
hard-copy listing of the analysis as opposed to an
on-line alert that is also highlighted as an alert in the hard-copy. For example:

IF response requirement deviates from model simulation
AND quantity of deviations is less-than 5% of test cases
THEN report deviation in warning only

Critical Component Identification
Critical component identification analyzes the results of the performance analysis module to

identify components of the design that create bottlenecks in processing or are in the critical path.
Bottleneck components are those which cause higher speed processing in associated components earlier in
the processing stream to wait for processing in the subject componme A critical path component is one
which stands alone in an important processing stream which could potentially disrupt processing in event of
failure or low-performance.

There are three specific "figures of merit" that are utilized to identify critical components and
processing bottlenecks. These include the time focus factor, critical path analysis, and critical state
analysis. Mime focus factor identifies those 20% or so critical components that are responsible for 80% or
so of system execution time. With critical path analysis, simulation determines which paths (patterns of
state traversals) occur most and least frequently. The most frequently occurring will implies a set of
components which require the utmost care to ensure system integrity. Critical state analysis uses
simulation to help identify those states that occur most frequently which indicates the most active and
therefore critical components. Critical state analysis is further enhanced by an expert system program that
determines critical components. The expert system rules adjust the component identification based on the
degree to which critical states occur more frequently than other states.

Problem Analysis
This analysis identifies problem areas in a system design. This problem analysis is performed by

algorithms and expert system rules. The areas of analysis performed include condition search and rule-
based analysis. Condition search enables the designer to specify a set of unwanted design conditions which
are searched for in the Petri net design. For example, if Slot 7 represented the condition,
"EjectionSeatArmed" and Slot 41 represented the condition "WeightOnWheelsTrue", the user would select
these two conditions and the tool determines if this, potentially unsafe phenomenon, could occur. Rule-
based analysis utilizes requirements to identify problems such as violated reliability constraints, unheeded
error recovery considerations, and excessive cost factors. The design diagram (Petri net) supports the
definition of needed characteristics such as error recovery and cost.

195

An InmlligeaK Real-T'nie System Assessment Tool Andeut & Peters

Problem and Critical Component Correction Auistance
Problems and critical areas identified by the design performance, criical component, and problem

analysis modules is further processed to report applicable designer assistance. A rule set includes
knowledge about how to resolve problem areas and modify designs to incorporate these problem
resolutions. An example of the type of rule that provides correction assistance is as follows:

IF component.x is identified as a bottleneck
AND compmentx is software
THEN suggest dataflow and processing division otto two hardware resources

Graphical Design and Simulation
Commercial ProTEM capability is incorporated into the ExpeR'r too[to yield real-time system

graphical design and simulation facilities. The supported Petri net methodology is based on Petri net theory
and is the result of extending this theory in order to make it more practical and effective in complex systems
development. This extended form of Petri net technology enables users to model all facets of complex
systems including sequentiality, concurrency, asynchrny and specific capabilities for real-time systems
such as priorities and timing. The following section discusses the Petri net objects and rules in slightly
more detail.

Automated Conversion of Design Diagrams to ProTEM Petri nets

Dataflow and oetse design diagrams in all of their various forms and variations represent the most
widely used means of descriting real-time and other software systems. Although they have proven
themselves to be valuable in describing the information flow relationships within a system, they do not
contain sufficient detail to enable an engineer to gain insight into the performance of the modeled system.
The technology required to do that is available in the form of Petri nets.

The advantage that Petri nets in their extended or enhanced form (e.g. the form used in the
ProTEM system) have over data flow diagrams in the area of real-time strategic and tactical systems
include their ability to model parallel and asynchronous operations, account for probabilities, portray
priorities and monitor and detail the utilization of resources (e.g. people, devices, software conponents).

The biggest problem facing anyone who wishes to use Petri nets in any form is the fact that the
population of objects in the net is not easily surmised from a cursory inspection of a system level diagram.
The paradox which exists here is that data flow diagrams are easy to use and understand but do not provide
sufficient information for us to be able to determine whether or not a particular system design will work
and if so to what extent while extended Petri nets can tell us what we need to know but they are not
intuitively obvious. The purpose of this design is to detail how the gap can be bridged.

Petri nets are composed of Tokens (indicators of a condition
being true), Places (used to specify the status of a condition) and .•)
Transitions (processes which transform one or more Tokens which
vv -. input to the Transition into more or one Tokens on the output --
side). Extensions to Petri net technology have been instituted (Peters A,
92, Peters 93] whichi transform Petri nets into a powerful tool for() ____

modeling real-time systems. These enhancements include timing, token .
typing, multiple behaviors, non-homogeneous places, priority and Figure 3: Example of one form of
resources. An example of one type of Petri net graphics (without Petri net graphics
attribute details) is presented in Figure 3.

The process of transforming DFDs and other more compatible design diagrams into PrOTEM Type
Petri Nets (ProNETs) may be summarized as shown in Figure 4 and as detailed in the following steps:

"o Identify the population of processing objects, Transitions, which comprise the system
"o For each object, determine what conditions and resources are necessary for the Transition to

execute

196

An lumiIWa Rat-Mrn SytMM AMMeAM1, Tool Ander A Pam

"~ Duomua die conditions in the formt of Places end form a network.
"0 When necessary. make msumpdiomregtii the9 execution dume of ecub Thnsition and refine dis

athermaing fhde somingledn nin ID validaft the network

Desig Qumf Evuil
Mw wse of waevra oftwom design quait evaluationt figues'm

of mcii: cmn greaty aibmo die soflwac aigineez dabity to quickly - -

and cost effectiveily ases di n .v merit ofa einoe
mnother. M& is tsrfue of both nm ewt to be built systms. and ezisdbg -- 3::
ones. Fgures merit Included InExpeRfr dha en~ifte d I
evaluationrey heavily on dhe results which the PWTEM Netr net I*m~'_
make avaiMlae Desig qualiy evaluation figures of mahin:h Figure 4: Ova%*wwof dulg
ExpeWr hnulude behasvior analysis, resource loaft ngmd diagram uo Pr*NET coiwuioas
WWelIauWorbinatoral factom

Behavior manysla refie on the observaton thaft dewider One rang of behavior possible by a
Fmprt the d higher fte lielhood the ath component wil fall [Halstead 75]. 7bis Is becaue multipl

behiaviors Imply poorly d=&g outpedcd or logc and/or complex Irterfces to other componeras
Usin simulation runs, behavisoranaysis breaks ouz and assign oveall system behaiviors to lzdvkAal
systemt components. lncrdhodtey large bevorm factors for some components imply further investigation
Into, decomposing die component is warrzantd.

Resource loadin analysis measures the dnsevatio ntat use of a resource (eLg. cormmunlcatious
buss) by a component constitutes a potentia blocking situation. One way to avoid this is fth =s of a

prordzation scheme whereby the hWghe priority Wesk wil gain access to the needed resources when thos
resource ane needed. Two Important factors to comilder here are 1) What makes a component a high
priority component - what It does or what it Is processing? mid 2) Can preemption cause a faiue?

By multiplying or comnblnlg some of the Indvidual malysis factors mathematicaly, the
differences between mid amonig various system components cani be made more pronounced.
Wedghted/ombInatorial factor can Include multiplying the figur of merit for the most used compoen by
the number of dumes it gets prieempted or it preempts aniother component.

CONCLUSIONS
During a Phas I feasibiity study, we successuly deveiloped the conceptual requirments, high-

level design, and a proof-of-concept prototype for the ExpelVFinteligent rea-time system assessment tool.
7be prototype Is operational with some features completely implemented. It show that the system design
and assessment tool concept is viable and that Its fuW JImpmetaioIs feasile Te beniefits of
successfulfly devek~ing the ExpeWi tool wil be improved complex real-time systins development
through automated requirements specification, systems desig% critical area Identification, and desig
evaluation. ExpeWl can be applied to computer systems development for DoD, Fedeal agencies, xid
commercial industries includbn -,Y'13rcs, nuclear systemts and telecommunications.

[Porte 92] Forte and Nonnan, A sW~-auesas.t by the ojwft e engineering conmuaniy, ComnctOsof
doe ACM, Apri 1992.

[Halstad 75] K~ IL Hastand, Sotwae physics: baskcpr~ciples, IBM Reearch Report, RJiM~2 Yorktown
Heights, NY. 1975]

[Nguen 92] C. Ad Nguye mid S. L Howell, System desgnfactors, Proc. 199 Complex Syslemns Engineerin
Synthess and Assesment Technolog Workshop, NSWC, Silve Sprvi&g MD.

[Pamu 92] WI Peters, Design methokds fredo evld mebe~ddedajamm uhw'Wing wcxcaon tims and swae
sets, Fourth Internationial Confernce on Straegic Sc'twmr Systems, Huntsville, AL, March 1992.

[Nelrsl 93 W. Peters and L. Schultz, The e'~plicox fpetrl nets Ix object orleaied enterprise simulations,
26th Hawaii International Corat.wr.r - System Sciences, Maul, Hawaii, Januay 199.

197

An Environment for Analysis of Parallel Systems (EAPS)

Mohsen Pazirandeh

180 Cook SL. Suiw 315. Denver. Co. 80206
(303)321-495"5

Oliver McBryan
After. C.p owScenceD epumnI
a v Comky lari Dodder, Co 8030

Areas of interest

Dr. Mohsen Pazandeh is the President of Innovative Research Inc. (iRI). RIis a small aerope
cmay, engaged in design of aplctosand assessment 1ofj wief rmac fparle ytm.H

ha a doct e in Mathematics and Operaions Rs•eh fiom Univerity of Califonmia.

Dr. Oliver McBryan is theo pofessor of Computer Sciences and the Dito of Center for Applied
Parallel processing at the University of Colorado at Boulder. He received his doctorate in
Madthmat from Harvad University.

198

I
1. Introduction

This pap discusses the design of an environment for evaluating performance of parallel systems.
It resulted from a Phase I research project funded by the Naval Underwater Systems Center
(NSWC) under the SBIR program. Three technical objectives were identified: (1) find a convenient
way to describe and synthesize a large class of applications, (2) similarly, define a method to
describe and synthesize a large class of parallel systems, and (3) find a convenient method for
mapping application programs to the system nodes and predict the performance of the resulting
system. In addition to showing the feasibility of the above objectives, the research resulted in the
development of a prototype of the environment. The prototype, based on an Innovative Research
design evaluation tool, established the feasibility of the first two objectives and developed the
outlines of the approach for the third. This paper discusses these findings and plans for its Phase I1
development. A proposal for developing many of the functionalities discussed in this paper has
been submitted to NSWC.

2. BaLkground

It is becoming increasingly evident that parallel systems will play a major role in meeting thecomputational needs of large scientific, miita.y, and c plicati ons..This is partily due
to the rapid increase in the processing requirements of large applications which are growing at a
rate faster than is provided for by the introduction of new processor generations. A simple example
serves to illustrate ttie point.

To solve a two dimensional Poisson equation using finite differences on an nxn grid requires the
solution of a set of linear equations of the type Au = f where A is a square matrix of dimension n2.
The number of operations using the crudest Gaussian Elimination solution technique will be of the
order of n6. For a problem of reasonable size, say n=1,000, the number of operations is therefore
of order 1018. The magnitude of this problem is realized when we consider that a fast CRAY Y-MP
performs at 2 GFLOPS, i.e. 2x10 9 operations per second. Thus to solve the problem on this
machine requires 317 years. Most real applications are more complex than this example. For
example, solving a three dimensional Poisson problem increases the computational requirement
and solution time by a factor of n3. Of course, there are a number of techniques (e.g. iterative
solution or FF1 based methods), and properties of the problem (e.g. sparsity of the matrix) that
can significantly reduce the processing time - to aL low as O(n3 iog(n)) operations in this special
case. However realistic numerical simulations often require the repeated solution of such a problem
perhaps thousands of times (e.g. the number of timesteps in a fluid simulation). Further, the
memory requirements of the problem are very high and will limit the choice and performance of an
architecture. This simple example illustrates that even on the fastest vector machines, it is quite
difficult to solve large problems in a reasonable time. Thus, alternative options must be considered.

The most promising alternative so far has been parallel systems. A number of such systems have
been introduced and the number is increasing rapidly. Recent experience has shown that parallel
systems are no longer entirely experimental, and that useful systems have already been developed
(e.g. the Connection Machine CM-2 and CM-5, Intel iPSC860, etc.). Furthermore, it has been
shown that they can be used to solve real problems (e.g. linear algebra, partial differential
equations, etc.) and at perfrances many times faster than a conventional vector computer such as
the CRAY YMP/8 (reference (6] describes 24 Gflops computations on a CM-5). However, it has
not been shown that such systems can be used as general purpose computers, and in fact they may
never be. The relevant question is not whether a Teraflops system can be built, but rither how such
powerful systems can be used effectively. In many cases only, a small fraction of a system's
potential power is utilized. Poor performance of such systems can be attributed to one or more of
the following causes:

199

"* The incompatibility of the application and the architecture is a major cause of poor performance.
For example, to solve a small to moderate sized set of linear equations, LU decomposition may
work well on vector machines such as CRAY, while the same algorihm may perform poorly on a2
massively parallel machine. Generally, non-structured lications with non-homogeneous
subproblems am poor candidates for implementation on SN massively parallel systems which
are most efficient when performing identical lock-step operations.

"* The application's decomposition into tasks and their mapping onto processors have not been
per'onmed optimally. To fully exploit the potential power of these systems the application must

decompoed with maximum parallelism into tasks (grains) and mapped to processors in some
optimal fashion. The decomposition stategy and the subsequent assignment of tasks is a major
determinant of system performance, since the order of processing determines how tasks will
commurIcate with each other and how synchronization among tasks will proceed.

3. Benchmarklng

In the absence of good methodologies, benchmarking has been widely applied as an evaluation
tool. But benc g is highly application specific and its results cannot be generalized. In most
cases, performance can vary widely and the be rkn g results must be manually manipulated to
opmie performance. The basic idea of benchmarking is to define a number of kernels (or pieces
of code) which can represent a wide range of applications. The character and the choice of these
representative codes can vary widely, but they fall into four categories: synthetic such as
Whetstone and Dhzrstone, kernels such as Livermore Loops, algorithmic such as LNPACK, and
applicationsuch as Perfect Club. Benchmarking has gained wide acceptance because the alternative
approaches of analytical modeling or discrete event simulation are not feasible beyond the simplest
examples, and do not offer much hope. Analytical models ae too difficult to build and generally
not very accurate. Discrete event simulation quickly becomes too complex and unwieldy. But
benchm-rking, in its present form, also fails to address several important issues it was originally
designed for. Although considerable attempts have been made to produce benchmarks which are
more representative of real workload, benchmarkdng still remains inadequate as an evaluation tool.

Thus, in spite of its widespread use, benchmarking is not the method of choice for measuring (and
more importantly predicting) the performance of an application on a parallel system. This is
especially true for the end users whose primary interests are the performance of their applications.

4. An Environment for Analysis of Parallel Systems (EAPS)

In view of the above discussion, we proposed to determine the feasibility of developing an
environment that can be used to convemently define parallel architectures, design and decompose
applications, map their tasks into the system nodes, and evaluate the performance of the system.
Major consideration in such undertaking is that it must serve a diverse group of users with varied
background and expertise who will rely on the environment to evaluate the performance of an
application. The development of the environment must proceed with this in mind, and must
possess tools required to support these and other needs. Flexibility is an important consideration as
the environment will be used to analyze a varied class of architectures. Flexibility has a broad
interpretation, covering the ability to define a wide range of architectures, applications,
performance measures, and operational concepts (e.g., various types of scheduling strategies,
synchronization scenarios, parallel algorithms, etc.). Flexibility is also reflected in the number of
options the user will need to design and execute a model. The definition of events, identification of
resources to be analyzed, partitioning of the problem, the granularity of the tasks, and their
assignments to processors we just few of these options essential to developing flexible models.

200

iM

Me Bit Tools Opdtow Software Hardware naUlyis Help

Defauitm Edting Decomp Level To AD

FFr
Mulnpid
Dyna 3-D
Shallow aW

/ Storage devices

Figure 1. Opening window of EAPS

4.1. Parallel System Definition

All system elements are defined hierarchically. At the highest level a parallel system is a node in a
larger system, and thus can be connected to a front-end processor (host), storage devices, or
workstations. At this level one needs to only specify the global attributes of the system such as
nam speed of processor at a node, speed of communication processor at a node, number of
virtual processors per node, number of nodes, e per node, network, protocol, etc.

The second level decomposition of an architecture can be done either by defining a new
decomposition, using a previously defined decomposition, or using a library decomposition.
Decomposition of a parallel system consists of defining the node structure and applying it to
various nodes, specifying the communication network, and assigning application tasks to nodes.

Two forms of assignment can be performed: node and application decompositions. Two grids are
provided. One to spe the nodes a given (node) decomposition apply, and the other specify the
nodes a program is assigned. Initially, each gird represents all nodes of the parallel system, and
hence a program (or a node decomposition) assigned to the system is assigned to all nodes. The
assignment of an entity can be ald to a subclass of nodes by progressively partitioning the
grids. Each action will partition the nodes into two equal parts, and thus after N actions, each
partition represents M*2 -N nodes, where M is the total number of nodes. The partitioning action
can be reversed. The assignment of an entity (a node decomposition or a program) to a subclass
will assign it to all nodes within that subclass. This capability allows for the representation of
SIMD, MIMD, SPMD, and mixed architectures. Selection of a task will highlight its partition. An
alternate way of partitioning the nodes, and arbitrary decomposition of a system with arbitrary
number of nodes in each subclass will be accommodate via scripdng

I
j 201.

Scripting is a mechanism whereby a previously created script file may be provided which defines a
detailed node decompositon, assignment, and/or network description. Also it is possible to ask the
system to generate a script for any constructed node, including builtin defaults or library choices.
Scripting is a powerful and versatile utility in EAPS with a number of key applications. Its most
important use is in assigning decomposed nodes and application programs to arbitrary groups of
nodes. Scripts are sets of code developed by the user specifying how system entities (programs,
node decompositions, etc.) should be assigned. EAPS will provide the capability for writing
Scripts and can read (i.e. execute) them upon user's command. For Phase 11, scripting will be
limited to the development and the execution of a previously defined set of code to assign programs
or a node decompositon to an arbitrary class of nodes.

The assignment of a decomposed node (or a program) to a group of nodes is accomplished by
selecting the entity and assigning it to a desired partition of the appropriate grid (which is then
highlighted). This enables the user to group nodes into a number of subclasses each with different
decomposition. Arbitrary partitioning, not a function of powers of two, is handled either
graphically (i.e. by enclosing the desired set of nodes) or via Scripting. An existing decomposition
can be reviewed and edited, and put in a library and made available to other users.

The specific network descriptions are predefined and cover a range of standard commercial
architectures. These will include Intel Paragon, Kendall Square KSR1, CRAY MPP and Thinking
Machines CM-5. The inclusion of a number of specific descriptions allows the system to be used
as a training tool by both vendors and users of MPP systems.

Library modules are provided for a range of standard networks. These are of two types: generic
and specific. Generic networks describe rings, meshes, torii, hypercubes, cube-connected cycles
and other standard configurations. Hierarchical networks may be built from these units. For
example a network such as the KSR1 or SUPRENUM-l is a two-level hierarchy - using a ring or
bus to interconnect a cluster (Ring-0 in the KSR1, or Cluster bus in the SUPRENUM-1) and using
a further ring (Ring:l) in the KSR to connect many Ring:O, or a grid of busses (SUPRENUM
Bus) in SUPRENUM to interconnect clusters. Network descriptions may be provided either
globally, through a script file, or locally by providing node interconnectivity information. Global
networks can then be specified by replication. Networks require several parameters for a complete
description. These include connection bandwidths, communication latency, message buffering
capabilities (number and total size), support for asynchronous communication, ability to overlap
communication with computation and ability to communicate simultaneously on multiple channels.
All of these characteristics together specify a network.

Another critical aspect of MPP design is the communication protocol between nodes. At the lowest
level, protocols may be either store and forward or worm-hole routing. At a higher level one needs
to support message typing. We intend to sup.port several of the current protocols as predefined
modules. These will include PVM, EXPRESS, PARMACS, MPI and possibly Intel NX2. Other
standards will be added as they appear.

Communication protocol will play the same role as processor instruction set does for CPU design.
At the highest level, communication for a program or subprogram will be represented in a
simplistic way in terms of expected data volume and destination. At a lower level, individual
communication operations will be recognized, and simulated taking into account whether
asynchronous capabilities are available.

I
202I

FU* Kil Tools OpeloM Software Hardware Analyin Help

SDe.aul..I BiinS IlScenuio, M Dacp LeM I Pm S - All,-

amA meat Program an

1 0 Node AppliCatone

LJIULI Shallow Iffitr

LLI" Dyna 3-D

- 4,096 I6ON

ISO

- Nodes

CM-5 Node

Siilr o heachteuneth pplton s defne herrcically KSR. itcNobdefie sa

Cc~he

New Nodeloa
memory

figure 2. Dec nOmposidtion of a no&e of Parago

4.2. Application Decomposition and Synthesis

Similar to the architecture, the application is defined hierarchically, iLe. it can be defined as an
entity and decomposed in teims of a number of programs (or kernels). The kernels themselves can
be further decomposed in te=ms of other kernels. The idea of defining application kernels is not
new (e.g. Bailey, D., et. al. [2], and Saavedra-Barrera, R., et. al. [13], among others). SES
Workbench expands this capability by providing a limited capability of defining kernels. Our
approach differs in a significant way:

Most authors have developed the idea of using kernels in the context of benchmarkin-. They have
attempted to identify a number offixed kernels to represent a large class of applications (mostly
scientific). Thus, the user can only use the available kernels to synthesize an application without
the ability to alter their characteristics, e.g. change their attributes, decompose them, redefine them,
or add to them. We allow the user to define any number of kernels, define their attributes in a
number of different ways, manipulate them, decompose them, combine them, and use them freely.

An application can be represented as a single entity and analyzed as such (though it may not be
very interesting or useful). Its attributes can be specified in a number of forms. It can be assigned
to any node or all nodes of the architecture. Such analysis may be useful in understanding the
behavior of a piece of code uniformly assigned to all nodes of a system. Programs, tasks, or
functions (collectively called kernels) are the building blocks of the application and can be defined
in two different ways: by choosing program from the sofjware menu or by double'clicking on an
existing program in the appliadon window.

203

4.3. Performance Analysis

Performance analysis is the process of applying performance metrics, such as the ones described
above, to an application and then analyzing the results. There are three basic strategies that can
be incorporated: analytical, b a a simulation analyses. Onepurpose of peformance
analysis is to be predictive: an engineering design project may need an advance estimate of the
computational resources it will need to run specific applications with certain grid sizes. A second
use is to optimize performance by analyzing the efficiency of an existing code. An effective tool
will provide useful information in both of these situations. The analysis component of EAPS is
based on the desire to combine the best features of benchmarking, analytical modeling, and discrete
event simulation to enable an end user (an analyst or a scientist) to evaluate (and predict) the
performance of an application on a parallel system.

4-3.1. Pwupose of analysis

The analysis of a parallel system is performed to serve two distinct purposes:

a. Application performance. This reflects the application's performance and is of interest to the
user. Metrics such as response time, execution time, elapsed time, and speedup quantify the
results of this form of analysis.

b. System capacity. This form of analysis quantifies the total system capacity and is usually
represented in terms of mega-, giga-, or tera-Flops. The key concern in this form of analysis is to
represent the expected system capacity as a percentage of theoretical capacity of the system. This
ratio quantifies the unused (or idle) portion of the capacity and how much the system spends for
overhead purposes such as communication.

4.3.2. Forms of analysis

As we have already mentioned EAPS will allow the simultaneous performance of a number of
heterogeneous analyses. Major analysis forms that eventually will be supported are:

"Analytical analysis is based entirely on previous measurements of a system, or on known
features of the design of a system. In the simplest case one might measure the vector
performance of a single processor and model it as a function of vector length. Indeed this
particular example is particularly well known, being described typically by the vector length
required to achieve 50% of peak performance. Such a model can then be incorporated in
analyzing performance of a code that is dominated by vector operations - provided the lengths
of vectors are known, and not determined only at runtime. Even in the case that needed
information is available only at runtime, an analytical model can still be incorporated into a
performance estimator provided the appropriate runtime parameters are available to it. Analytical
analysis ms an iportant tool in providing understanding of the gross behavior of codes, but it is
exceedingly hard to extend to any level of detail. However providing even rough "ball-park"
estimates of performance can be important - both to system designers and to applications users.

"• Simulation analysis is based on a simulation of an actual application. Typically the code is
represented schematically in some way and then executed on a simulator. Traces of various
operations and parameters are accumulated during the simulation. The key is to use an effective
representation that captures the main aspects of the code while omitting fine detail that would
cause the application simulation to run endlessly. For example an operation such as a Fast
Fourier Transform may be represented as a single item in a trace, and its "cost" assigned using
an analytical or measured performance from an earlier benchmarking analysis. Sometimes one
may run a simulation analysis because the hardware target is either not available, or has not
been built yet. Here again, simulating all aspects of execution tends to be impractical in most

204

cases, and models for behavior of components of a system can greatly speed the simulation
without sacrificing too much predictive accuracy.

- Benchmarking analysis involves tracing and measurement of an application on real
hardware. Depending on the tracing environment used, information obtained may be as
simple as execution time or as detailed as a complete trace of all memory accesses in all
processors. For applications of significant size, complete traces might run to billions of
operations and are not practical. However traces of subroutines or smaller blocks may be
extremely helpful in building an analytical or modeled description of such blocks. Benchmarldng
is also invaluable for locating critical sections and suggesting places where optimization
would be most fiuitful. The nature of the benchmarking performed will typically depend on
the architecture. In the case of shared memory systems the emphasis tends to be on tracing
access patterns to shared memory locations, while for distributed memory systems, tracing of
interprocessor communication patterns is most relevant

- User-defined code. The performance of an entity can be determined by executing custom
developed code which may be a new algorithm, an alternate description of behavior of an entity,
or a new simulation of a device.

- Data from actual code. An extreme case of flexibility is the incorporation of performance data
from the execution of actual code on a target architecture.

4.4. System optimization and dynamic reallocation of tasks

A major consideration in the design of parallel systems is the optimization of performance by
reassigning tasks to system nodes. Although at first it may seem that equalizing node utilization
may lead to an optimal system, in reality this is far from true for two reasons: (1) equalizing node
utilization may lead to higher communication overhead and lower efficiency, and (2) since tasks are
not infinitely divisible, achieving uniform node utilization is an impossibility. Therefore, the
problem can be viewed as a non-linear constrained optimization problem.

Independent of how the problem is formulated or solved, the optimization is useful only if it can be
done dynamically, i.e. during processing tasks are reassigned based on a pre-defined criterion.
Dynamic reassignment of tasks adds another dimension to an already difficult problem.

4.5. Libraries

Libraries are the critical building blocks that allow users to reuse previously developed simulation
specifications, and to create new ones in a methodical fashion. A library stores a node description,
network topology, program or other specification in a form where it may later be accessed by
referring to its name and providing appropriate parameters. Libraries also encode default values
for attributes and allow applications to access library modules transparently. Libraries are the
primary means of providing performance information which has been previously obtained either by
analytic or experiml simulaion.

Libraries are allowed to be hierarchical. While all elements of a library are regarded as equivalent,
a library may utilize a lower-level library to which it places calls. No cycling is allowed - the lower-
level library may not call the higher level one for example. Hierarchical libraries may be used to
define multilevel descriptions of entities. In this case, the top level library modules record the top
level view of a node, network or program, and, under control of a parameter, may either return this
description, or may make a call to the next level library to give a more detailed representation.

205

4.6. Application Program Interface (API) O

Application Program Interface (API) expands the capability of EAPS by allowing the user to
develop, edit, review, and execute other programs from within EAPS. Upon receipt of the Execute i
command, EAPS is temporarily exited to execute the selected program, and return. Major
applications of API are to interface with other tools, to develop and execute custom developed
code, and to develop benchmarks and include them in the other forms of analysis. I
4.7. Tracing and profiling capability

Tracing and profiling, an intermediate step between system definition and analysis, enables EAPS i
to accept perfmance, attribute, and other data about a system entity from an external source, e.g.
other tools, or via the execution of actual code. Its major use is deriving (or specifying) the
attributes of complex entities that will be difficult to find otherwise. A typical example is defining
the attributes of a decomposed node containing computing and communication processors, local
memory, cache, and registers. Predicting the performance of such a complex entity, analytically
(or via simulation), can be difficult. An alternate way will be to incorporate data derived either
from executing an actual code, a benchmark, or from another tool into EAPS. Tracing will be an
option in the definition form of items being specified and permits the user to name a file (or a tool)to find the attributes of the desired entity. I
5. Bibllograahv

[1] Bailey, D., et. al., "The NAS Parallel Benchmarks", Tech. Rep. RNR-91-002, NAS Systems i
Division, 1991.

[2] Dongarra, J.J.; Sorenson, D.C., "Linear Algebra on High Performance Computers", Invited
paper at "Parallel Computer 85", pp 3-32. I

[3] Dongarra, L., Marti, I. L., Worlton, 3., "Computer Benchmarking: paths and pifalls", IEEE
Spectrum, Vol 24, No. 7, July 1987, pp. 38-43.

[4] Grassel, C., Scharwzmeier, J.; "Performance of Application Programs on Supercomputers: I
Results of Perfect Benchmarks," CRAY Research, Inc., 1990.

[5] McBryan, 0., "Hypercube Algorithms and Implementations", SISSC, 8, pp. 227-287, 1987. I
[6] McBryan, 0., "Performance Evaluation of the Myrias SPS-2 Computer", to be published.

[7] McBryan, 0., "Optimization of Connection Machine Performance", International Journal of
High Speed Computing, voL 2, no. 1, pp. 23-48, 1990.

[8] McBryan, 0., "New Architectures: Performance Highlights and New Algorithms", Parallel
Computing, voL 7, pp. 477-499, North-Holland, 1988. I

[9] McBryan, 0. and E. Van de Velde, "Hypercube Algorithms and Implementations", SIAM J.
Sci. Stat. Comput., 8, pp. 227-287, 1987.

[10] McBryan, 0. and Pozo R., "Performance Evaluation of the Evans and Sutherland ES-i I
Computer," CS Dept Technical Report CU-CS-506-90, Univ. of Colorado, Boulder, 1990.

[11] Pazirandeh, M., "An Environment for Simulation of Distributed Systems", Phase H SBIR
Contract, AIRMICS, 1989 and 1991, Contract number DAKF1 1-91-C-0008. I

[12] Pazirandeh, M., "An Environment for Analysis of Parallel Systems", Phase I SBIR Contract,
NSWC, 193, Contract number N60921-92-C-0106. I

[13] Saavedra-Barrera, R., et. al. "Machine Characterization Based on an Abstract High-Level
Language Machine," IEEE Trans. on Computers, Vol. 38, No. 12, Dec 1989, pp 1659-1679.

206

A Dependable System Perspective*

M. M. Hugue, N. Sun, C. J. Walter
Allied-Signal Aerospace Company

Columbia, MD 21045
mmhObatc.allied.com

Abstract

Dependable systems are needed to meet the demands of critical zeal-time applications. The
reliability, reponse time and recovery time requirements awe used to divide the set of dependable
systems into three clanes: ultra-dependable systems, highly dependable systems, and highly
available systems. Other system characteristics implicit in the clam can then be extracted. This
scheme is applied to a variety existing dependable systems.

1 Introduction

Critical real-time applications depend upon embedded digital systems to perform speedy and precise
computations. In the past, fault-tolerance methods that assured error-free results were developed
separately from methods that guaranteed real-time performance. The amsnsptions made to address
real-time issues wer often in conflict with those needed for fault-tolerance and vice versa. As
a result, few systems exist that can be guaranteed to meet critical real-time constraints in the
presence of faults. Both current and future applications, such as aircraft flight control, high-speed
communication, and on-line data retrieval require dependable systems. Such systems must address
real-time and fault-tolerance constraints to meet their error-free service requirements. The generic
concept of dependability encompasses the issues and techniques most commonly used to identify,
implement, and measure system fault-tolerance and real-time performance. As defined in [1],
dependability is a qualitative term that describes the trustworthiness of a computer system. Our
goal is to use characteristics relevant to both real-time and fault-tolerant concerns in identifying
dependable system features appropriate for a given application.

Before proceeding, we review terminology essential to this discussion. Then, we discuss the
use of an application's reliability, response time, and recovery time requirements in determining
essential features of candidate dependable systems. We conclude by applying this method to existing
hfult-tolerant and real-time systems.

2 Fundamental Terminology

The design of a dependable real-time system must integrate issues common to both fault tolerant
and real time systems. As shown in Figure 1, from [1], dependability can be partitioned into

"Supported in put by ONR Contract # N0014-91-C.0014

207

m tm~mmm Eno"

-mym

va-u'O

Avkbfy

Figure 1: Dependability Issues

impairments, means and measures. Dependability impairments consist of failnres, errors, and
faults which can prevent service requirements from being met. Dependability means include fault
avoidance, where faults are prevented through the se of intrinsically reliable components or formal
methods; fault tolerance, where the effects of errors are masked through the use of redundant
elements; error removal, where the presence of latent errors is minimized; and error forecasting,
where the presence, creation, and consequences of errors are estimated.'

Dependability measures include availability and reliability. The availability of a system, A(t),
is the probability that the system is operational at the instant of time t. If the limit of A(t) as
t approaches infinity exists, that limit represents the fraction of time that the system is capable
of performing useful work. The reliability of a system, R(t), is the conditional probability that a
system will be operational at time t = r, given that it was operational at time t = 0. Thus, it is
typically more difficult to guarantee reliability than availability. [2] The numerous tradeoffs between
reliability and availability significantly affect system life-cycle costs. The reliability requirement of
correct operation throughout an interval is more stringent (and expensive) than the instantaneous
availability requirement. In fact, some applications may be able to tolerate minutes or even hours
of unavailability while a failed system recovers. Thus, the recovery time requirements also identify
dependable system parameters suitable for a given application.

A dependable system must perform functions or provide services within a time frame determined
by. the application requirements. In a general sense, fault-tolerance focuses on improving system
reliability and availability, by supporting continual correct operation after faults occur or restoring
operations after system failure. Similarly, real-time research focuses on ensuring the timeliness
of services. Real-time systems have three basic task components: reading inputs, performing
computations, and producing outputs. Services must be delivered within finite time intervals as
dictated by the application response time and other performance requirements. There may be

'Tie teder is =d to [1])ot a detaled dlacuim of depemdablty isem.

208

several modes of operation (such as: takeoff, cruise, and laud) which can cause the workload to
increase or decrease. In a hard real-time system, computations must be performed with a specified
frequency or response time. The failure of a task to start or to complete on time can have intolerable
-consequences, such as loss of system control or loss of life. Conversely, in a soft real-time sytem
missed deadlines may be tolerable. A task may start or complete late without causing system failure,
provided that the workload behavior satisfies an acceptable statistical distribution. Systems with
hard deadlines often rely on wont case scheduling analyses to guarantee task deadlines. Systems
permitting soft deadlines may schedule tasks based on average behavior to improve performance
and response time. An in-depth study of real-time computing can be found in [3].

3 Dependable System Classes

In previous work, fault-tolerant real-time systems were distinguished by their reliability and dead-
Iile requirements. This often leads to confusion during the design stage because the target system
reliability range and deadlines (hard or soft) are not sufficient to further determine fault-tolerant or
real-time system requirements. In this section, we use the additional parameters of response time
and recovery time to identify general classes of suitable systems. Other system features are then
irarlicit in the class.

Large markets with specific demands have spawned systems targeted for several types of de-
pendable computing applications, such as telephone service, on-line transaction procesing, and
real-time control. Each of these systems is required to provide dependable service, but with very
different reliabilities and response times. The discussion below is based on three different graphs.
The upper graph of Figure 2 shows the application space with respect to the attributes of reli-
ability and response time. The lower graph of Figure 2 shows suitable recovery techniques with
respect to reliability and recovery time. These graphs are combined in Figure 3 to yield a composite
dependable system overview.

In Figure 2, we have highlighted three separate system classes: Highly Available Systems
(HAS), Ultra-Dependable Systems (UDS), and Highly Dependable Systems (HDS). Each region
accommodates applications which require the given levels of reliability and response time. High
availability systems address the needs of on-line transaction processing applications. Banking, sales,
inventory control, and telephone systems must be available continuously, and the integrity of shared
databases must be maintained. These systems are distinguished by their ability to tolerate short
down-times in the range of minutes to hours. Repair or recovery from faults can often be postponed
until predefined maintenance intervals, without loss of life or property. Mission times for HAS ae
on the order of 100 hours, significantly longer those of other systems.

Highly dependable systems emphasize reliability over availability because particular applications
need to be completed without interruption. The class of HDS accommodates applications that
accept mission failures on the order of one in log to 107 missions, with mission times between 10
and 100 hours. Since a physical process may be controlled, typical response and recovery times
can range from milliseconds to seconds. System applications which are essential, but may have
backups or permit human intervention, are typically implemented using HDS. Many submarine
and battleship fire control applications can be accommodated by HDS, as can communication
systems, security systems, and environmental control systems.

Ultra-dependable systems represent applications where loss of the computer system is unac-
ceptable, as it may cause loss of life or destroy extremely expensive property. Very quick response

209

reliability

reopasa. time

I < I ~~ois I~f~

Iad Iajung =ig41arcmi I
PIX i t @eSYsi~@

no oft
I~Vz tiesI

Fip 2: D xIn SpcIo ytmadUmq

ii210

times ae needed because ev the most basic application functions depend an the computer. For
example, a womentary loss of computing power in an aircraft fight controller can cause the plane
to become unstable and leave the *sa-fight envelope. The reliability re-qudirr ents are extrely
high, with failure probabilities in the range of 10- to 10- for mission times of ton hours or less.
The acceptable recovery times e so small that expensive resource replication and forward error

recovery2 methods must be used to mask faults before they can cause system failve. Historically,
fcrlt-tole c ns have dominated real-time performance concerns. Applications designers
were often rq e to hand-craft now task sc , o when only min €n o in
the workload, in the for in the tytm

The lower graph of Figure 2 shows the tradeof between reliability and recovery time require-
mants. Applications that emphasis. high availability over long mission times can afford dower fault
recovery times than applications with shorter mission times. Applications with short mission times
must typically react to the physical environment. Continuous availability is expected because any
interruption in service can be catastrophic if it is not immediately recoverable. When very fast
recovery times are needed, fault masking must be used as there is no time to interrupt processing
for recovery. Active redundancy management policies become feasible when recovery times are in
the range of milliseconds to seconds. Finally, more time consuming policies, such as diagnosi and
roil-back or reconfiguration are allowable with longer recovery times.

The above observations are combined in Figure 3 to provide a composite view of dependable
system characteristics. We have noted several representative systems for each clas. The number of
prospective applications continues to increase due to the fast dynamic response of computen and the
inherent reliability of integrated digital electronics. The applications can be further examined with
respect to the user's emphasis on different characteristics of dependability, specifically: availability,
safety, and fault tolerance. Distributed approaches to these problems have been selected since they
possess many appealing characteristics, such as avoidance of a single point of failure and the ability
to physically distance resources. These classes address the different trends envisioned for the next
generation of computing resources and applications. They also identify many intriguing practical
problems and research topics in designing and evaluating dependable computing systems for time
critical applications.

4 Discussion

In this paper, we have presented three classes of dependable systems suitable for different sets of
application requirements. We have added response time and recovery time requirements to the sys-
ten reliability and deadline requirements commonly used to characterize dependable systems. We
divided the set of dependable systems into three classes: highly available systems, highly depend-
able systems, and ultra-dependable systems. Then, we mapped many existing system approaches
into this framework. While the granularity of this division may not be sufficient for all critical
reWl-time applications, it provides a system designer with a guide to appropriate fault-tolerance

and performancement techniques.
The issues of concern in developing dependable systems cover all phases of the system, life-cycle.

It is important to understand that the payoff associated with fault tolerance may be apparent only

2Forward erm recvezy rers to the use of masing techniques to maintain coect system opezntios in the
S-,e F P of faults.

2U1

IM I

-Om-n

- --- -- -- -- --

Figure 3: The Compouite Dependable Syutm and Real-Time Viewpoint

212

when the complete life-cycle of the system is examined. The strategies formulated during the initial
design step have siguifcant impact an the sulting system, d nbty and cost. Thu, system
design and anaysais based oan this framework can ensure that parameters critical to the application
are identiied early in the system design stag. While the development of theoretical and practical
approaches to dependbiity continues, the design of dependable computers stil remains an at.

References

II] J. Laprie, Dependabity: Basic Concepts and Terminology. Springe-Verlag, I .

12] D. Siewiorek and IL Swars, The Theory and Practice of Reliable System Design. Bedford,
Massachusetts: Digital Press, 1st ed., 1982.

13] X. G. Shin and C. Krishna, Characteriation of real-time computers," NASA Contractor Re-
port 3807, NASA, 1984.

213

TNPL=NMNTAYOR !UO3U MOGY

214

I
I

Real-Time Databases for Complex Embedded Systems:
Predictability and SerializabilityI

i Kwei-Jay Lin

Depannew of Computer Science
Universily of Illinois

Urbana. Illinois 61801

Sang IL Son

Depanq m of Comprer Science
Uriversity of Virginia

Charlonetville. Virginia 22903

SAprl 15. 1993

I ABSTRACT

Rea-time daWms (RTDBS) for complex systems have transctions with explicit timing con-
smauims, such as deadlines. Conventionl database systems ame not desigpnd for time-critical applications
and lack features required for supporting real-time transcions. Meeting the requirmma of RTDBS
will require a balanced and coorlinated effort between concurrency control and transaction scheduling.
In this p;per, we focs an two issues: predictability and sedalizability. One approach is to combine exist-

S ing conummn cy mmol protocols with real-time scheduling algoddhm To meet more deadlines, con-
currency cono poocols can be modifed to favor more urgn unsaction. Another appfoah is to

* e the non-edalzable semantics in real-time applications. We survey and discuss many tedmiques
S that ca'be used to desigp and implement teld-time databases.

C215

L Introductiom

As our society becomes more integrated with computer technology, information processing for
hwmmn activides necessitates distributed and fault-tolerant computing that responds to requests in redl-
On& Many computer systems arm now used to monitor and control physical devices and large complex
system which must support real-time capability. Since the real world is constantly evolving It is very

Important for system designers to design and implement real-time systems so that they can always keep
up with the real world.

Real-time database systems (RTDBS) have (at least some) transactions with explicit timing con-
straints, such as deadlines. RTDBS are becoming increasingly important in a wide range of applications

such as aerospace and weapon systems, computer integrated manufacturng, robotics, nuclear power
plants, network management, and traffic control systems. Unfortunately, conventional databame systems
are not designed for time-critical applications and lack features required for supporting real-time transac-
tions. They are designed to provide good average performance, while possibly yielding unacceptable
worst-case response times. It has been generally recognized that there is a lack of basic theory for real-
time database systems since the traditional models i:• not adequate for time-critical applications [Abb,
Buc89, Ko:90. Lin89, LS90, Raj89, SRLS8, Sha9l, SongS, SonS8b, Son9O, Son9l, Son92, Son931.

Typical real-time systems try to meet the timing constraints of individual tasks but ignore data con-
sitency problems. Task and mansacdon abstractions are similar in the sense that both are units of work
as well as units of scheduling. However, tasks and transactions are different computational concepts and
thir differences affect how they are controlled. In real-time task scheduling, it is usually assumed that all
tasks are preemptable. Preemption of a transaction that uses a file resource in an exclusive mode of writ-
irg may result in subsequent transactions reading inconsistent information. In addition, while the runtime

behavior of a task is statistically predictable, the behavior of a transaction is dynamic, making it difficult
to predict its execution time with accuracy.

Most real-time database operations ame characterized by (I) their time constrained access to data,
and (2) access to data that has temporal validity. These operations involve gathering data from the

environment, processing the gathered information in the context of information acquired in the past, and
providing timely responses. The operations also involve processing not only archival data but also tem-

poral data which loses its validity after a certain time interval. Both of tie temporal nature of the dam
and the response tme mquirements imposed by the environment am transaction timing constraints han-
died by either periods or deadlines. Therefore, the correctness of real-time database operation depends not

only on the logical computations carried out but also on the time at which the results ae delivered. The

goal of real-time database system is to meet the timing constraints of transactions.

A key point to note here is that real-time computing is not equivalent to fast computing. Rather than
being fast, more Important properties of RTDBS should be timeliness, Le., the ability to produce expected

results early or at the right time, and predictability, i.e., the ability to fhnction as deterministic as neces-

sary to saisfy system specifications including timing constraints [Stan88]. Fast computing which is busy

216

doing the wrong activity at fte wrong time is not helpful for real-time computing. While the objective of

real-time computing is to meet the individual timing constraint of each activity, the objective of fast com-
puting is to minimize the average response time of a given set of activities. Fast computing is helpful in
meeting stringent timing constraints, but fast computing alone does not guarantee timeliness and predicta-

bility. In order to guarantee timeliness and predictability, we need to handle explicit timing constraints,
and to use time-cognizant techniques to meet deadlines or periodicity associated with activities.

RTDBS have some very unique requirements. The design and impleme of RTDBS intro-
duces many new and interesting problems: What is an appropriate model for real-time transactions and
data? What are the language constructs that can be used to specify real-time constraints? What ae the
measures of system predictability? How should real-time transactions be scheduled? What is the best
concurrency control scheme that considers real-time constraints and importance of transactions? Is serial-
izability an appropriate correctness criterion for RTDBS? In this paper we try to answer some of the
questions and review current approaches to the design of RTDBS. We focus on two important issues:
predictability and serializability.

The remainder of this paper is organized as follows. In Section 2, we first describe some of the
characteristics and requirements of RTDBS, and discuss about issues involved with schedulability, pned-
ictability, and non-serializable executions. In Section 3, we discuss priority-based conflict resolution
mechanisms and review some of the algorithms that are based on serializability. Section 4 presents tech-
niques for generating a set of schedules that are non-serializable but acceptable to RTDBS. FinaUy, con-
cluding remarks with future research issues ame summarized in Section 5.

2. RTDB Characteristics and Requirements

The reasons why conventional database systems are not used in real-time applications include their
poor performance and their lack of predictability. In conventional database systems, tansaction process-
ing requires access to a database stored on secondary storage; thus transaction response time is affected
by disk access delays, which can be in the order of milliseconds. Although these databases are fast
enough for traditional applications in which a response time of a few seconds is often acceptable, these
systems may not be able to provide a response fast enough for high-performance real-time applications.
One common appmach to achieve high performance is to replace slow devices (e.g., a disk) by a high
speed devices (e.g., a large main memory). Another alternative is to use special techniques to increase
fth degee of concuirency [SonSb].

Since rel-time system ae often used in safety-critical applications, they must provide predictable
performan. An unpredictable system can do more harm than good under abnormal conditions. There
are many reasons why traditional database systems may have unpredictable performance. For example,
to ensure the data consistency, traditional database systems often block certain transactions from reading
or updating data if these data are locked by other transactions. Blocking will cause transactions to be
delayed. Even worse, it is often difficult for a transaction to predict how long the delay will be since the
blocking transactions themselves in tum may be blocked by other transactions. Consequently, the

217

I
response time for a transaction in conventional database systems is often unpredictable.

Moreover, databases in many real-time systems have the following unique problems:

(1) - Many data objects in a database correspond to active data objects in the real world. Their values

-may change by themselves, regardless of the database state and activities.

(2) A real-time database may never be completely correct. As soon as a real-world value is recorded

in the databas, it may already be out of date.

(3) Different data objects in a database may be recorded at different rates. Their values may not co-

exist in the same real-world snapshoL

Due to these problems, RTDBS need special protocols to ensure that all transactions executed are neces-

wsry and Ms"ful. A transaction execution is necessary only if it can help other more critical transactions

produce correct results (both in terms of time and value). A transaction execution is useful only if its

result can be applied to the system without producing any adverse effect to the system mission. Toward

these goals, an execution using some traditional protocol may wot be acceptable to RTDBS, while
RTDBS may accept some transaction executions using unconventional measures.

In the following, we compare real-time database systems with other types of databases such as

CAD)CAM databases and business databases (Table 1). From these comparisons, we may have a better

picture of the true requirements of ral-time database systems.

Table 1. Database Characteristics

Applications Data Transaction Performance
Charact tcsCharateristics R ents
Device inputs Periodic, short Schedulability

Real-Tune System and machine state Event-driven Hard deadline
Systems System history/statistics Producer/consumer Graceful degradation

Multi-media Frequent updates System reliability
Temporal attributes Decision making Data avalility
Quali attributes Associative (or no) search Best effort
Design data Iterative, tentative Version control

CAD/CAM Complex 3-D structure Long transactions Special concurrency
Hierarchical Sharing among groups Friendly user interfaces
____ estent objects Frequent updates Flexible manipulation
Large volume Large table search Data correctness

Financial Simple objucts Complex query Strict serializblity
System Flat structure Storage intensive System trouglut

Numeric or text Atomic actions Hifgh reliability

218

2IL Data Chaacteristlcs

Since real-time systems am used to monitor and to control physical devices, they need to store a

large apount of information about their environments. Such information includes input data from dev-

ices as well as system and machine states. In addition, many embedded systems must also stow the sys-

tem execution history for maintenance or error recovery purposes. Some systems may also keep track of

some system statistics like averge system load or average device temperature. Depending on the appli-
cations. real-time systems may have to handle multi-media information like audio (for sonar devices),

graphics (for radar devices), and images (for robots). Since systems are constantly recording information,

data must have their temporal attributes recorded. Also, some input devices may be subject to noise
degradation and need to record the quality of the attributes along with the data.

Often a significant portion of a real-time database is highly perishable in the sense that it may con-
tribute to a mission only if used in time. In addition to deadlines, therefore, other kinds of timing con-

straints could be associated with data In RTDBS. For example, each sensor input could be indexed by the
time at which it was tsken. Once entered into the database, data may become out-of-date if it is not

updated within a certain period of time. To quantify this notion of "age", data may be associated with a

vald inerval [Liu88, SL92]. Data outside its valid interval does not represent the current am. What

occurs when a transaction attempts to access data outside its valid interval depends on the semantics of

data and the particular system requirements.

In comparison, data in CAD/CAM applications are mostly related to design information. They often

have complex and hierarchical structures. Data in financial systems, on the other hand, are much simpler

and flat in structure. However, financial systems usually have a large volume of data to be processed.

2.2. Transaction Characteristics

Transactions in real-time database systems can be categorized as hard and soft transactions. We

define hard real-time transactions as those transactions whose timing constraints must be guaranteed.

Missing the deadlines of this type of transactions may result in catastrophic consequences. In contra
soft rel-time trm actions have timing constraints, but there may still be some justification in completing

the transactions after its deadline. Catastrophic consequences do not result if soft ral-time transactions

miss their deadlines. Soft real-time transactions are scheduled taking their timing requirements into

account, but they am not guaranteed to make their deadlines. There are many real-time systems that need

database support for both types of tranmstions.

Many transactions in real-time database systems are used to record device readings or to handle sys-

tem evens. They are either periodic or event driven. Most of the transactions are short since they must be

responsive to their environment Transactions can be viewed either as producers or constinns for certain

Input data. For periodic transactions, most will perform updates in every period. The transactions trig-

gered by events must often make decisions. Due to the real-time constraints, either no search or associa-

tive search mechanism is preferred.

219

In comparison, CAD/CAM transactions are more iterative in structure and longer in durations. They
need to share information among group users. Also, many frequent updates will be conducted before a

design is finalized. For financial applications. the queries requested could be quite compkex and require

long s•arches through large tables. Financial transactions therefore require fast high-volume storage dev-

ices to speed up their operations. To prevent data inconsistency, financial transactions usually are exe-
cuted as atomic actions.

2.3. Performance Requirements

For CAD/CAM applications, systems must control the versions evolved during the design process.
Due to the cooperation among team users, special mechanisms must be provided to facilitate concurrent

access from different users. A friendly user interface and flexible manipulation primitives ame definitely
desirable. For financial applications, the most important performance criterion is the control of con-
current transactions in order to ensure that the effect of concurrent executions is equivalent to the effect
those transactions would have had, if they had been run in some serial order. This well-known serializa-
bility goal in transaction processing is well establishel as an appropriate notion of correctness for conven-
tional transaction scheduling. In contrast to real-time systems, conventional database systems do not

emphasize the notion of timing constraints or deadlines for transactions. The performance goal is tc

reduce the response times of transactions by using a serialization order among conflicting transactions.
For example, the most commonly used two-phase locking (2PL) protocol [Bern87] synchronizes con-
current data access of transactions by blocking and thus may violate the timing constraints of transac-
tions.

The most. important requirement for real-time applications is to provide a feasible schedule so that
transactions can meet their hard deadlines. Systems also must degrade gracefully since their applications

are often safety-criticaL System reliability is definitely an important issue for these systems. To make

fast and correct decisions, data availability is critical to system performance. Also, due to timing con-
straints, many decision-making processes can only use the best-effort approach; they must stop at the

deadlines. In RTDBS, the timeliness of a transaction is usually combined with its criticality to calculate
the priority of the transaction. Therefore, proper management of priorities and conflict resolution in real-
time transaction scheduling is essential for insuring the predictability and responsiveness of RTDBS.

2.4. Issues on Predictability and Serializability

One of the most interesting challenges in RTDBS is the creation of a unified theory for real-time

scheduling and concurrency control that maximizes both concurrency and resouree utilization subject to

three consraints: data consistency, transaction correctness, and transaction deadlines [StanS8]. While

the theories of concurrency control in database systems and real-time task schedulihg have both
advanced, difficult problems remain in the interaction between concurrency control protocols and real-

time scheduling algorithms. In database concurrency control, the objective is to provide a high degree of

concurrency and thus faster average response time without violating data consistency. In real-time

220

scheduling, it is desirable to maximize resources usage, such as CPU utilization, subject to meeting tim-

ing constraints. If the system is not designed properly, it may be impossible to meet both objectives: a
uansaction may need to be blocked if it is in conflict with other transaction, yet it must be executed
immeciately to meet its deadline.

The first issue we want to address is the predictability of real-time database systems. As stated

above., the goal of scheduling in RTDBS is to meet timing constraints. Many real-time task scheduling
methods can be extended to real-time transaction scheduling, while concurrency control protocols are still
used to maintain data consistency. The general approach is to utilize existing concurrency control ixoto.
cols, especially two-phase locking, and to apply time-critical transaction scheduling methods that favor
more urgent transactions [Son89]. Such approaches have the inherent disadvantage of being limited by
the concurrency control protocol upon which they depend, since all existing concurrency control proto-
cols synchronize concurrent data access of transactions by a combination of two measures: blocking and
roll-backs of transactions. Both are barriers to meeting time-critical schedules. Several recent projects
have tried to integrate,real-time constraints with database technology to facilitate efficient and correct
management of timing constraints in RTDBS. In Section 3, we will discuss some of the projects and
compare the results.

The second issue that we will discuss is the serializability of RTDBS. Traditional concurrency con-
uol protocols induce a serialization order among conflicting transactions. Although in some applications
weaker consistency is acceptable [GarB3j. a general-purpose consistency criterion that is less stringent
than serializability has been difficult to find. However, RTDBS may have a different notion of "correct
execution" in transaction processing. Based on the argument that timing constraints may be more impor-
tant than data consistency in RTDBS, attempts have been made to satisfy timing constraints by sacrificing

database consistency temporarily to some degree [Lin89, VMS8]. It is based on a new consistency model
of real-time databases, in which maintaining external data consistency (values of data objects represent

correct values of external world outside the database) has priority over maintaining internal data con-
sistency (no data that violates consistency constraints). Moreover, a real-time transaction may include a
temporal consistency requirement that specifies the validity of data values accessed by the transaction.
While a deadline can be thought of as providing a time interval as a constraint in the future, temporal con-
sistency specifies a temporal window as a constaint in the past. As long as the temporal consistency

requirement of a transaction can be satisfied, the system may want to provide an answer using available
(may not be serializable) information. In Section 4, we investigate several of the protocols which provide
non-traditional (i.e. non-serializable) transaction schedules that are acceptable in RTDBS.

3. Serializable Execution of Real-Time Transactions

Conventional transaction processing requires controlling the concurrent execution of iransactions to

ensure serializability. However, the notion of serializability may be too restrictive for real-time transac-
tions. In real-time database systems, guaranteeing temporal consistency requirements might be more criti-
cal than satisfying the conventional notion of serializability.

221

In this section. we review some of the proposed scheduling and concurency control algoriduns,
based on serializability, for real-time transactions. To enfecme serializability, they use conventional
scheduling and concurrency control schemes such as two-phase locking (2PL), timestamp onrdeing (TO),
and optimistic concurrency control (OCC) as their basis. They combine those conventional schemes with
priorty-based conflict resolution mechanism such as priority abort [Abb88. Abb92, Hua89, Hum9l],
priority inhertance [Sha9l, Hua9I], priorlty wait [Hua9l, Har9O, Har9l], and adjstiag serializaton
order [LS90, Son92]. Schemes that are based on the correctness criterion different from seridalizability
wili be discussed in Section 4.

3.1. Locking-based Conflict Resolution

Concurrency control protocols induce a serialization order among conflicting transactions. For a
concurrency control protocol to accommodate timing constraints of transactions, the serialization order it
produces should reflect the priority of transactions. However, this is often hindered by the past execution
history of ransactions./ A higher priority transaction may have no way to precede a lower priority tran-
saction in the serialization order due to previous conflicts. For example, let TH and TL be two transac-
tions with TH having a higher priority. If TL. writes a data object x before TH reads it, then the serializa-
tion order between TH and TL is determined as TL -+ TH. TH can never precede TL in the serialization
order as long as both reside in the execution history. Most of the current (real-time) concurmency control
protocols resolve this conflict either by blocking TH until TL releases the write lock or by aborting TL in
favor of the higher priority transaction TH. Blocking of a higher priority transaction due to a lower prior-
ity transaction is contrary to the requirement of real-time scheduling. Aborting is also not desirable
because it degrades the system performance and may lead to violations of timing constraints. Further-
more, some aborts can be wasteful when the transaction which caused the abort is aborted due to another
conflict.

Abbott and Garcia-Molina have proposed a restart-based 2PL (Abb88, Abb92]. It incorporates
priority information in lock setting so that transactions with higher priority will be given a preference.
Whenever a higher priority transaction is in conflict with a lower priority transaction, the lower priority
transaction will be aborted and restarted later on. One of the weaknesses of this scheme is the impact of
restarts on scheduling other transactions to meet their timing constraints. Restarting a transaction could be
very costly in temnsof wasted resources. and a large number of restarts increase the workload of the sys-
tem and may cause other ransactions to miss their deadlines.

To reduce the number of restarts, the conditional restart protocol is proposed by the same authors. In
this protocol, the lower priority transaction will have to be restarted only If the slack time of the higher
priority transaction is smaller than the remaining execution time of the lower priority tnnsaction that
holds the lock. There are a few problems with this protocol. First, the effectiveness of this checking is
greatly affected by the blocking probability of the lower priority transaction. Second, the scheduler must
have information such as the execution time and slack time. In real-time database systems, such informa-
tion is hard to get due to the dynamic nature of resource demands and the data-dependent execution path

222

of transactions. Furthermore, priority inversion and deadlock is still possible, although they have a lesser
degree Of ImpaL

Huang et al. developed and evaluated a group of protocols for real4ime transactions [Huas9,
Hua9 I. Their study includes protocols for CPU scheduling, data conflict resolution, deadlock resolution.
transaction wakeup, disk scheduling, and transaction restar. In terms of conflict resolution, dhy com-

pared three approaches:

(1) priority Inheritance which eliminates the problem of CPU blong (not data blocking) and
attempts to reduce the period of priority inversion by allowing the low priority transaction hold-
ing the lock to execute at the priority of the highest priority transaction waiting for the lock.

(2) priority abort * ch completely eliminates the problem of priority inversion as well as CPU
blocking by aborting the low priority transaction.

(3) conditional priority inheritance which is a compromise between the two, taking the remaining
execution time of the low priority transaction into consideration.

Their performance study is not based on simulation but on actual Implementation of those protocols
on a real-time database testbed called RT-CARAT. Their results indicate that CPU scheduling protocols
have a significant impact on the performance of real-time databases. They also found that the overhead
incurred in locking is non-negligible and hence must not be ignored in the analysis of real-time tramac-
tion processing. For conflict resolution, their performance results indicate that with respect to deadline
guarantee ratio, the priority Inheritance scheme does not work well, while conditional priority Inhelitance
and priority abort schemes perform rather well for a wide range of system workloads. They clarified
through experiments that the priority inheritance scheme is quite sensitive to the priority Iheritance
period. A long priority Inheritance period will affect not only the blocked higher priority transactions but

also other concurrent non-blocked higher priority transactions. The conditional priority inheritance

scheme works well because of its reduced priority inheitamce period.

3.2. Optimistic Approaches

Recently, real-time concurrency control protocols based on the optimistic approach have been pro-
posed and studied [Har90, Hua9lb, Son91]. Optimistic concurrency control (OCC) exploits the low pro-
bability of data conflicts [Kun81]. It is a non-blocking protocoL the OCC scheduler uses abort and restart

to sedalize concurrn data operations, thereby avoiding blocking. Subsequently, OCC is free font
deadlock. In addition. it has a potential for a high degree of parallelism. These features of OCC make it
promising particularly for real-time transaction processing. However, the abort-based conflict resolution
of OCC has the problem of wasted resources and time.

In OCC, write requests issued by transactions are not immediately processed on data objects but are
defeed until the urasaction submits a commit request, at which time the tranaction must go through the
valdadon phase. Because write operations effectively occur at commit time, the serialization order
selected by an OCC protocol is Vhe order in which the transactions actually commit through the validation

223

phase Transaction validation can be performed in one of two ways: forward vlidaton or back*wd

ha OCC protocols that perform backward validation, the validating transaction either commits or
arts depending on whether it has conflicts with transactions that have already committed. Thus, this
valldation scheme does not allow us to take transaction characteristics into account. In forward validation
[Hae4], however, either the validating transaction or conflicting ongoing transactions can be aborted to
resolve conflic This validation Scheme is advantageous in real-time database Systems. because it may
be preferable not to commit the validating transaction, depending on the timing characteristics of the val-
dating tranaction and the conflicting ongoing transactions. A number of real-time concumeucy conrl
methods based on OCC using forward validation scheme have been studied [Ham, Hua9lb. Son92].

Hanrsa et aL proposed a group of optimistic real-time concunuacy control protocols, based on for-
ward.ualidation, and evaluated them on a simulation model [Har90]. When a conflict is detected during
validation, the priorities of the conflicting transactions are examined, and their fate is determined accord-
ing to the algorithm being used. If the validating transaction has a priority higher than all of the tnsac-
tions with which it conflicts, the validating transaction will commit. and al the conflicting ones will
abort. However, if some of the conflicting transactions have higher priority, the system can choose one of

the following options:

(1) OPT-Sacrifice: if at least one of the conflicting transactions has higher priority, then the validating
transaction is aborted.

(2) oPr-Commit: the validating transaction is always committed.

(3) OF-Wait: it incorporates the priority wait mechanism such that the validating low priority tran-
saction will wait for the completion of conflicting high priority transactions.

The Wait-50 algorithm is an interesting extension of Opt-Wait: it incorporates a wit control
mechanism. In Wait-50, a simple "50 percent rule" is used, in which the validating transaction is made to
wait while more dmn half of the conflicting transactions have higher priority. Once that state is reached.
remaining conflicting transactions are aborted, irrespective of their priorities and the validating transac-
tion is committed. The goal of the wait control mechanism is to detect when the beneficial effects of wait-
ing. in terms of giving preference to higher priority tnnsactions, are outweighted by its drawbacks, in
terms of late renta•ts and an increased number of conflicts. In other words, It tries to avoid the loss of
work already accomplished by the validating transaction. It is a comp;rmising strategy in the sense that
we can control the amoum of waiting based on transaction conflict states. Their simulation study shows a
significant performance gains from Walt-5O over other choices.

Hariusa et aL have also conducted a study on the relative performance of locking-based protocols
and optimistic protocols, and concluded that OCC protocols outperform two-phase loddng-based proto-
colb over a wide range of system utilization. Huang et aL also conducted a similar performance study of
real-time OCC protocols, but on a testbed system, not through simulation [Hua9lb]. They examined the
overall effects and the impact of the overteads involved in implementing real-time OCC oan the testbed

224

system. mheir experimental results c€ntrast with the results in [Ha9-O], showing that OCC may not
always outperform a two-phase locking-based protocol which aborts the lower priority transaction when a
conflict occurs. They pointed out that physical implementation schemes may have a significant impact on
the performance of real-time OCC protocol.

The rationale for OCC is based on an "optimistic" assumption regarding nm-time conflicts: if only
few run-time conflicts are expected, we can assume that most execution is serializable [BemS]7. There-
fore OCC simultaneously avoids blocking and restarts in the optimistic situations. Unfortunately, how-
ever, this optimistic assumption on transaction behavior may not always be true in real world situations.
In a database system where run-time conflicts are not rare, OCC depends on transaction restarts to elim-
inate nonsenalizable executions. The adverse effect of transaction restarts for serialization is that
resources and time are wasted. In OCC, because data conflicts are detected and resolved only during the
validation phase, a transaction can end up aborting after having used most of dte resources and time
needed for its execution. When the transaction is restarted, previously performed work has to be redone.
This problem of time and resource waste becomes even more serious in real-time trmction scheduling,
because it reduces the chances of meeting transaction deadlines.

Another problem of OCC Is that of unnecessary aborts. This problem is often caused by the imper-
fect validation tests used in OCC protocols. Many validation test schemes are based on the intersection of
the rad sets and write sets of transactions rather than on the actual execution order of tranmctons, since
in general it is difficult to record and use entire execution history efficiently. Hence sometimes a valida-
tion process using read sets and write sets erroneously concludes that a nonseralizable execution has
occured when it has not in actual execution. Such a conflict can be called a viral conflt. A virtual
conflict leads to one or more unnecessary transaction aborts. This problem of unnecessary aborts also
results in waste of resource and time, and is serious in real-time transaction processing.

33.. Dynamic Adjustment of Serializability

Son et al. proposed the concept of dynamic adjustment of serialization order to provide better ser-
vice to high priority transactions (LM90, Son92]. Transactions write into the database only after they are

committed. By using a priority-dependent locking protocol, the serialization order of active transactions
is adjusted dynamically, making It possible for transactions with higher priorities to be executed fim so
that higher priority znsactions are not blocked by uncommitted lower priority transactions, while lower
priority trnactio may not have to be aborted even in face of conflicting operations. The adjustment of
the serialization order can be viewed as a mechanism to support time-critical scheduling. The objective
of this protocol is to avoid unnecessary blocking and aborting.

The protocol Is similar to optimistic concurrency control (OCC) in the sense that each transaction
has three phases, but unlike the optimistic method, there is no validation phase. This protocol's three
phases are read, walt, and write. The read phase is similar to that of OCC wherein a transation reads
from the database and writes to its local workspace. In this phase, however, conflicts am also resolved by
using the transactions priority. While other optimistic real-time concurrency control protocols resolve

225

conflicts In the validation phase, this protocol resolves them in the read phase. In the wait phae, a Van-
saction waits for its chance to commit. Finally, in the write phase, updates anr made permaem to the
database. The simulation study in [Son92c] indicates that this protocol offes a signhficau perform ce
Improvement over 2PL with priority abort (also called h•gh priority scheme in [Abb88J). One of the main
reasons for the improved performance is the reduced number of "useless restarts" and Oumecessary

aborts".

4. Non-Serializable Real-Time Transactions

As we have discussed earlier, serializability may not be necessary for real-time macdons To
facilitate more timely executions which meet their deadlines, we may extend the definidon of conectness

in database transactions. Since real-time system are used to respond to extenal stimuli (e.g. in combat
systems) or to control physical devices (e~g. in auto-pilot systems), a timely and usef result is much
more desirable than a serializable but out-of-date response. As long as the result of a transaction is con-
sistent with the situations of the real world, whether or not the datbase Is itrenally consisten may not
be important to the application. Depending on the semantics and requiremets of operadous, a real-time
system may apply different protocols under different situations.

In this section, we review several techniques for generating non-serializable real-time database
schedules. All techniques utilize some semantic information on the temporal or dependency relationship
between transactions or data objects. With this extra information, the system may produce a set of
schedules that are non-serializabl: but acceptable to the specific applications.

4.L External and Temporal Consistencies

Many RTDBS are used to monitor and control physical devices and large complex systems. Since
the real world is always changing, it Is up to the systems to ensure that their database subsystems amr
always consistent with the real world. Ideally, a system should guarantee that the database always con-
tains good approximate values of their real-world counterparts. However, this may be too expensive to
implement for some applications since there may be too many values to be updated in tie database.
Anoter, less expensive, solution is to make sure that all data read by a real-time mracon are close
approximates o atur cumrn real-world values. The latter approach may be easier to satisfy since only
the subset of the database currently used must be guaranteed to have up-o-dat values.

Another Imp nt Issuefor ral-time transactions is tt of emporal consimency. Temporal con-
sistency is the constraint that all data constitute a real-world snapm o (. they corm d to the real-
world facts of approximately the same time). If a transaction uses sown new fact mixed with old fac,
the trsaction may have an erroneous picture about the rea world and thus make wrug daIsdoo.

A transaion Tt is a sequence of distinct operations, a4;a, • .. Each operation of a trasaction
accesses only one object. An object. however, may be used in more than one operation In a transactim.
A transction can thus be defined by a sequence of (ai,ol) pairs. A hitory H of a Kt of transctions T is
thus a sequence of operations, (aI,o), from many transactions. Two histories are equWvalent if they have

226

the usme effect on the values of database and transaction results. A serIalizable history is a history which
is equivalent to a serial history (Le. transactions are executed sequemtally).

To muasm about the desirable history for rea-time databases, we define a timestaMp for each of theSuaaction operations. The timestamp of each opeatinm S (a) in a history is defined to be the clock time
when the operation is performed. The timestamp of the object veniom s (oj) is the time when the version

Is created.

Given a history of transaction executions, the eerana cou•w ,cy requirement can be defined by
the following equation as in [LJ9 1:

yI, Is(ah)-S(oMI 54

The equation specifies that for each operation of a real-time transaction T&, the data ued by the opera-
tion must be within the valid lifespan ej of the data. gi is dependent on the nature of the operation aj.
Some operation may require its data to be very consistent with the real world and theeibre have a very
mall�4 value. Others may have no concern for the validity of their data and thus have eI - -. in many
practical applications we may have one single value for all operations in a transacon. in oer words,

To check for the seaIoal consbt acy for a transaction. we need to compare the timesunps for all
objects read by the transactiom. In other words, transaction T& may require that die timestamps of all
objects it reads have a diffence not lar than 8:

VYJ, Is(ob)-S(ob) Sla

Sometimes, only the data in a data set have temporal consistency requirements. For example, the
three dimensional attributes of an aircaft location must be temporally consistent whenever they are used
In a computation. In that case, we can define a temporal consistency requirement for a data setS in terms
of 4:

SViJ. Is(o1)-S(o1) <Ls where (0oI)CS

The idea of temporally consistent data set cm be compared to the Atomic Data Sets (ADS) proposed
by Railkumr. In is dies [RaJ89. Rajkuma proposed an oappoch to decompose a dambase into dis-
joint ADS, and ue the modular concurmrcy control protocol [SLJSS] for real-time database concumr y
contrl.The consistency of each ADS cm be maintained independent of the other ADS's. A serwhe two
phase locDJng protocol is then ued to make sure that transactions ar Pm sedalzably with reopect to each
ofthe atomic data sets. However, no concept of temporal condstency is defined in ADS. We believe that

ft two concepts are compatible and that some protocol cr be implemented incorporating both of them.

An extnsive set of simulations have been performed in [SL92] to sudy the performance of various
concurrency control aliodthms in maintaining the temporal consistency of data in hard real-time systems.
A multiversion database model is anum ed in the study and the transactions are ssumed to be mostly

227

I
periodic The study compares the two-phas locking and the optimistic concurrency comul algorithms,
and Ands tha the opt~imstic algorithm is poorer in Maintaining temporal COnsistency.

4.2. TMe Compatibility Table

Based on the concept of intemal and external consistencies, we can divide the acdons In a l-dtime

.rnactio i nto two pars: those actions in die E-parr to enter external events in the database (Le. to

maintain external consistency) and those in the I-pan to maintain internal consistency. Typically, a
tU=at may start with actions in the E-part and conclude with actions in the I-pun.

In some real-time applications, a transaction cannot afford to wait for the database to repin imeral
consistency if the transaction has a stringent deadline requinment. In such cases, the database may allow
the internal consistency to be ignored temporarily in order to return a result before the transaction's dead-
line. Howevr, in real-time systems, such tansaction executions must still maintain the external con-
sistency. One solution is to guarantee only the pan of the transaction which maintains the external con-
sistency. The rest of the transaction may be executed at a lower priority after the result is produced

before the deadline.

A similar situation occurs when a transaction B is blocked waiting on an active transaction A to
AnsL Although A has no deadline constraint. B must be finished before deadline. In this cme, B can
internupt A as long as the E-part of A has finished. After B is executed, A may reume Its I-put to
recover the internal consistency. Thus for B's execution, internal consistency is not guaranteed, but
external consistency is maui ned. Since internal consistency usually has no time constraint, they may
be regained after the external deadline is met.

With the division of the I-pan and E-par in each transaction, a transaction compatibility table
(FC=) can be defined in a system. During run-time, when eal-time transactions ae scheduled, the table
is inspected to see if they need to wait for transactions arrived earlier. A transaction requiring an exter-
nally consistent data set must wait until all updates by its predecessor transactions are finished. A tran-
saction is a predecessor transaction of T if it updates some data value that will be used by T. The prede-
cess transactions for T is denoted as pre CT). To decide whether a transaction T, should be executed
afterT 2, the entry ofTCr(Tj, T2) is examined. The entry has four possible values as follows:

(1) T2 a pre(T). T's execution is dependent on T2 s executio. So if T2 is ahead of T, in the
scheduler qmw T 1 must always be executed before TI.

(2) T2 a pre(T) but T2 contains an I-part which can delayed. T, may preempt T2 when T2 reaches
an externally consistent breakpoint (ie. external data hat been entered).

(3) T2 a pre (TI) but T2's I-pan can be skipped if T1 has executed. Only the E-paflof T2 must be
inished before Ti 's execution. The I-part of T2 will not be executed at alL

(4) T 2 is not in pre(TI). It is acceptable to execute T, before T 2 even if T 2 is in frnt of T, in the
scheduler queue.

228

It should be dear thad TCF is not symmetric. Using the semantic information in a TCF, a scheduler
may achieve better performance by rearanging the transaction schedule. Suppose a transaction T is
ready to be executed, and there am several other transactions waiting to be executed before T. The
scheduler can compute the expected completion time for T if all ready transactions ame executed in dhe
order of their arrival If T can meet its deadline in this schedule. no adjustment is required and T will be
placed at the end of the schedule. If the expected completion time for T is later than its deadline, the
scheduler may adjust its starting time by using the TCT infonnation.

One of the issues in using the TCT approach is the size of the table. However, since most of the
transactions are probably incompatible, TCF is a sparse matrix in most cases. There are many efficient
data structures designed for sparse matrices so the size of the TCT should not be a problem. A more
unfamt-liar issue is to divide each uansaction into I-part and E-parL This can be solved by employing
some mechanical method in the compiler to analyze the data flow and separate I-pan from E-part
automatically. The most tedious work involved in implementing TCT is in deciding the value for each
entry. This may require careful analysis of the semantics. Mor research is still needed to make the
approach easily usable

43. Epsilon Serializability and Similarity

Epsilon serializability (ESR) [PugIJ Is a generalization of serializability (SR) that explicitly allows
limited amount of inconsistency in transaction processing. ESR enhances the degree of concurrency since
some non-SR executions are allowed. It allows users to bound the amount of temporary inconsistency. A
transaction with ESR as its correctness criterion is called an epsilotransaction (Fl). An ET is a query
ET if it consists only of reads. An ElT containing at least one write is an update ET. Query ETs may see
an inconsistent data state produced by update ETLs. An update transaction may export some inconsistency
when it updates a data object while query ETs are accessing the same data object.

ESR defines correctness for both consistent states and inconsistent states. In the case of consistent
states, ESR becomes SR. In addition, ESR associates an amount of inconsistency with each inconsistent
state, defined by its dedvwoan (or a dstawce) from a consistent state. To an application designer, this
implies that each query ET has an impon-t- , which specifies the maximum amount of inconsistency
that can be imported by it Similarly. an update FT has an .Wort-UmLir that specifies the maximum
amount of in sstency that can be exported by it. "he database system ensurs that these limits ame not
exceeded during the execution of ETs.

ESR has several important applications in real-time database systems. A concrete example of ESR
application is replication control in distributed real-time databases. It offr the possibility of maintaining

muual consistency of plcated data aync usly. A distribut real-time dabase wbich supports
ESR permits temporary and limited differences among data object replicas: these replicas am required to
converge to the standani one-copy serializability (ISR) as soon as all the update messages arrive and are
processed. A recent simulation study shows a significant improvement in terms of system responsiveness
can be achieved by using ESR in a distributed real-time database system as measured by the number of

229

Umsactacms that meet their deadlines [Son92].

Another interestin application of ESR in real-time database systems is to use it as a value-based
coneamess requiemenm. As long as the changes made to the value of a data object remain within a
specified limit, the system can allow on arbitrary order in accessing the data object by concurrent tramnsac-
tios. For example, if an application can tolerate an Imprecision upto 5 meters in distance in compuing
the position of a moving object, a transaction can access the data object without considering the access
order of other conflicting transactions, if the inconsistency limit is ensured not to be violated.

A related approach to execute trasactions without serializability is to allow similar data to be
updated or read in any order. If there are two updates that record similar values in a database, it makes no
difference to the future mad operations which value is recorded fim. This is the concept of skmhiary pro-
posed In [KM92J. Sine a real-time: databa models an external environment that changes contnuously,
the value of an object in the database can only be similar to its physical counterpart Therefore, for each
data object, we can define a region of values that are similar to a specific value. Moreover, two database
states am similar if the corresponding values of every data object in the two states ar similar.

With the above definition, two views of a transaction are said to be similar iff every mad event in
both views uses similar values with respect to the transaction. A schedule is fmal.-tate szwilm, to another

schedule if

(I) they are over the same set of transactions,

(2) for any initial state, they transform similar initial database states into similar output database
states.

Thus a system can produce a schedule which is similar to a serializable schedule as long as the two final
states are similar and the views of transactions in the two schedules an similar. Scheduling algorithms
using this technique an being investigated in [KM93J.

5. Conclusions

The design of RTDBS is still a wide-open area. Meeting the requirements of RTDBS will require a
blanced and coordinated effort between concurrency control and transaction scheduling. In this paper,
we have reviewed the issues and studied several approaches. The first approach is to combine existing
concurrency cont protocols with real-time scheduling algorithms. To meet more deadlines, protocols
can be modified to favor more urgent tramctions. The other approach in designing RTDBS is ID explore
the non-sedrlizable semantics in real-time applications. Since RTDBS needs to maintain external and
temporal consistnes, and real-world dam usually have condmiously evolving values, we can employ
n-taditional measures to meet the deadline of rel-time trsactions.

RTDBS of tomorrow will be large and complex. Tey will be distribad operate in an adaptive
manw in a highly dynamic environmMet, exhibit intelligent behavior, and may have cuastrophic conse-
quences if certain logical or timing constraints of transactions an not met. In this paper we tried to
answer questions raised by by some of the new characteristics. Meeting the challenges from all of the

230

acteristics would require more extensive and coordinated research efforts in many of the topics lsted
below.

* devclopmem of modeling techniques for distributed real-time transactiom and databases to specify
timing propee and temporal conirstency in an unambiguous manner. Validity of external data con-
sistency and relaionhidps between consistency constuaints and timing constraints need to be easily and
clearly specifed.

* development of priority-based scheduling protocols and concurrency conroil protocols that can. in an
integrated and dynamic fashion, manage transactions with precedence, reources (Including communi-
cation resources and 1/0 devices), and timing constraint. In particular, resource allocation policies
and distributed tansaction management protocols must be integrated.

o new models and protocols for database fault tolerance under real-time constraints. Since recovery by
"'undoing" operations may not be applicable in many circumstances, a form of forward recovery may

be necessary. Moreover, systems may need to provide uninterruptible minimum services and continue
to function during recovery.

. new archltecture support for fault-tolerance, for efficient data management, and for time-constrained
communication. Important issues in new architecture include interconnection topology, interpcess
communications, and support of fault-tolerant database operations. It is essential to have hardware
support for fast enor detection, mconfiguraion and recovery. In addition, new architectures may sup-

port real-time scheduling algorithms.

REFERENCES

[AbbS88 Abbott, R. and H. Garda-Molina, "Scheduling Real-Time Transactions: A Performance

Study," VLDB Corierence. Sept. 1988, pp 1-12.

[Abb92j Abbott, R. and IL Garcia-Molina, "Scheduling Real-Time Transactions: A Performance
Evaluatidon" ACM Trans. on Database Systems, vol. 17, no. 3. pp 513-560, Sept. 1992.

[Bem87] Bernste, P.. V. Hadzilacos, and N. Goodman, Concurreny Control and Recovery in Data-
base Systems. Addison-Wesley. 1987.

[Buc=89 Bucnmama, A. et al., "Time-Critical Database Scheduling: A Framework for Integrating Real-

Time Sdheduling and Concurrency Control," 5th Data Engineering Corterence. Feb. 1989.

[GarB3J Garcia-Molina, IL., "Using Semantic Knowledge for Transaction Processing in a Distributed
Database," ACM Trans. on Database Syst.. vol. 8, no. 2, pp 186-213, June 1983...

[Hae84J Haerder, T., "Observations on Optimistic Concuncy Cwonl Schemes," bmaon Sys-
urns. voL 9. no. 2, June 1984.

[Haz9O] Hariltsa. J.. M. Carey. and M Livny, "Dynamic Real-Time Optimistic Concurrency Control,"
Real-Time Systems Symposium, Orlando, Florida, Dec. 1990.

231

lHav9lJ Harits. 3.. M. Llvny. and M. Carey, "Earliest Deadline Scheduling for Real-Time Databe
Systems.- Real-time Systems Symposium. pp 232-242, Dec. 199 1.

[HuaIL9J Huang. J., J. Stankovic, D. Towsley, and K. Ramamritham, "Experimental Evaluation of
Real-Time Transaction Processing," Real-time Systems Symposium, Dec. 198.

[HUaM Huang, J.. 3. Stankovic, K. Ramamritham. anid D. Towsley. "On Using Priority Inheritanc in
Real-Time Databases." Real-time Systems Symposium, pp 210-22 1. Dec. 199 1.

[Hua9lb] Huang L.. J. Stankovic, K. Ramamriiham,. and D. Towsley, "]Experimental Evaluation of
Real-Tune Optimistic Conicurrency Control Schemes." VLDB Corference. Sept. 1991.

[Kungi] Kung. H. and J. Robinson, "On Optimistic Methods for Conicurrenicy Control," ACM Trans. on
Database Syst., vol. 6, no. 2, pp 213-226, June 198 1.

[Koz9OJ Korth, H., "Triggered Real-Time Databases with Consistency Constraints," 16th VWDB
Coreference. Brisbane, Australia, Aug. 1990.

[KM92 T.W. Kuo adW A. Mok. "Application Semantics and Concumrecy Control of Real-time Data.
Intensive Applications," Proc. IEEE 13th Redl-Time Systems Symposium, Phoenix. A7, pp.
35-45. Dec 1992.

[KM93J T.W. Kuo and A. Mok. "Real-Time Transaction Scheduling." maniuscript under preparation.

[LinS9J IL J. Lii. "Consistency hsues in real-time database systems." Proc. 22nd Hawaii Intd. CoPVf
System Sciences. Hawaii, pp. 654-661, Jan. 1989.

[LJ91J K.J. Lin, F. Jahanian, A. Thingra and C. D. Locke, "A Model of Hard Real-tune Transaction
Systems," Technical Report. IBM, 1991.

"(L901 Lin,. Y. and S. H. Son, "Concurrency Control in Real-tune Databases by Dynamic Adjustment
of Serialization Order," 11th IEEE Real-Time Systems Symposium. Orlando, Florida, Dec.
1990.

[LL03J Liu. C. L and Layland. L. W., "Scheduling Algorithms f1or Multiprogramminng in a Hard-
Real-Time Environiment", JACMV 20, January, 1973, pp. 46-61.

-[LiuBI]Uu, L. W. S., K. J. Lini, and X. Song, "Scheduling FHar Real-Time Tranisactions." 5th IEEE
WoirA op on Real-Time Operating Systems and Soft~wae, May 1988, pp 112-116.

[Mok83J Mo&, AK., "Fundamental Design Problems of Distributed Systems for the Hard Real-Time
Environment", Ph.D. Thesis, Massachusetts Institute of Technology, May 1983.

"[PIj Pu. C. and A. Leff, "Replica Control in Distributed Systems: An Asyrichmoous Approach,"
ACM IGMOD Coroference. May 199 1.

[RJ89J RajIcumar, R., "Task Synchronization in Real-Time Systems," PhD. Dissertatlon, Carnegie-
Mellon University, August 1989.

[SOM]1 L Sha and J.D. Goodenough, "Real-time scheduling theory and Ada." IEEE Computer. Vol.
23, No. 4. pp. 53-62, Apr. 1990.

232

[SL92] X. Song and J.W.S. Liu, "How Well can Data Temporal Consistency be Maintained?" Proc.

IEEE Symposium Computer-Aided Control System Design. Napa, CA, pp. 276-284, March
1992.

[SLJ88] Sha, L.. J. Lehoczky, and E. D. Jensen. "Modular Concunency Control and Failure Recovery,"
I- EEE Trans. Computers. Vol. 37, pp. 146-159, Feb 1988.

[SRL88] Sha, L., R. Rajkumar. and J. Lehoczky, "Concurrency Control for Distributed Real-Time
Databases," ACM SIGMOD Record 17, 1. March 1988, pp 82-98.

[SRL90] Sha, L., Raikumar, R. and Lehoczky, J. P., "Priority Inheritance Protocols: An Approach to
Real-Time Synchronization", IEEE Trans. Computers, VoL 39, No. 9, pp. 1175-1185, Sep.

1990.

[Sha9l] Sha, L., R. Rajkumar, S. H. Son, and C. Chang, "A Real-Tume Locking Protocol," IEEE Tran-
sactions on Computers. vol. 40. no. 7, July 1991, pp 793-800.

[Son88] Son. S. H., "Semantic Information and Consistency in Distributed Real-Tune Systems." lror-

mation and Software Technology. VoL 30, SepL 1988, pp 443-449.

[Son88b] Son, S. H., guest editor, ACM SIGMOD Record 17, 1, Special Issue on Real-Time Database

Systems, March 1988.

[Son89] Son, S. H., "On Priority-Based Synchronization Protocols for Distributed Real-Time Database

Systems," IFAC/IFIP Workshop on Distributed Databases in Real-Time Control, Budapest.
Hungary, OcL 1989, pp 67-72.

[Son90 Son, S. H., "Scheduling Real-Tune Transactions," Euromicro Workshop on Real-Time Sys-

tems, Horsho0m, Denmark, June 1990, pp 25-32.

[Son91] Son, S. H., R. Cook, J. Lee, and H. Oh. "New Paradigms for Real-Tune Database Systems,"

in Real-Time Programming, K. Ramamritham and W. Halang (Editors), Pergamon Press,

1991.

[Son92] Son, S. H., J. Lee., and Y. Lin, "Hybrid Protocols using Dynamic Adjustment of Serialization
Order for Real-Time Conrency Control." Journal of Real-Time Systems. vol. 4, Sept. 1992,

pp 269-276.

[Son92b] Son, S. IL and S. Koloumbis, "Replication Control for Distributed Real-Time Database Sys-
tems," 12th International Cor4erence on Distributed Computing Systems. Yokohama, Japan,

June 1992, pp 144-151.

[Son92c] Son, S. H., S. Park, and Y. Lin, "An Integrated Real-Tnme Locking Protocol," Eighth IEEE

International Coreerence on Data Engineering, Phoenix. Arizona, February 1992, pp 527-534.

[Son93] Son, S. H., J. Lee, and H. Kang, "Approaches to Design of Real-Time Datbase Systems,"
Database Systems for Next-Generaion Applications - Principles and Practice, W. Kim, Y.

Kambayashi, and L Paik (eds.), World Scientific Publishing, 1993, pp 120-131.

233

[Song9O] Song. X. and J. Liu, "Performance of Multiversion Concurrency Control Algorithms in Main-

taining Temporal Consistency", COMPSAC '90. pp 132-139, October 1990.

[Stan88] Stankovic, L., "Misconceptions about Real-Time Computing," IEEE Copwuter VoL. 21. No.

10. October 1988, pp 10-19.

[Vrb88J Vrbsky, S. and K. J. Lin, "Recovering Imprecise Transactions with Real-Time Constraints,"

IEEE Symp. Reliable Distributed Systems, Oct. 1988, pp 185-193.

23

I

234

Divide & Conquer Strategies and Underlying Lossless Principles
Harold Szu, Edgar Cohen, and John Wimgate

Naval Surface Warfare Center Dahlgren Division,

Silver Spring/White Oak, MD 20309-5000

Abstract

The mathematical principle of global optimization is formulated for
massively parallel and distributed processors (MP &DP) by means of divide-and-
conquer strategies. The lossless principle which is analogous to the incoherent
phenomenon in physics is expressed in terms of a vector velocity V that is derived

from the least mean square (LMS) kinetic energy E = I V 12/2. We illustrate the
nonlinearity that the sum of the best Traveling Salesman Problem (TSP) solutions
in subregions is not necessarily globally the best because of the boundary resultant
vectors: V = A + B have a cross interaction terms (A,B) * 0. In fact, a nearest
neighbor connection at the boundary cities represents a longer overall distance than
the next nearest neighbor connection between boundary cities. Then, a theorem of
orthogonal division error (ODE) for lossless divide-and-conquer (D &C) is proved,
and the orthogonal projection is constructed for solving TSP explicitly.

Keywords: Nonconvex Optimization, Simulated Annealing, TSP, Lossless Divide-
and-Conquer, Boundary Resultant Vectors, Orthogonal Projections, Recursive
Algorithm

L. Introduction

The hypothesis that a Divide & Conquer (D&C) Optimization Strategy shall
work for massively parallel & distributed processors (MP&DP) depends critically
upon the existence of a lossless mathematical principle for an Instantaneous &
Distributed Criterion (I&DC) allowing all divisions/processors to make local
decisions which contribute positively to the global optimization procedure. In other
words, there should be no requirement during execution for communication with
the central processor which would constantly assess tradeoffs among the decisions
made by the local units.

This phenomenon has been referred to (by Szu in the 1987 Second
Supercomputing Conference at Boston [1]) as the Reporter bottleneck, namely,
"Who should do what, where, when, why, and how----6 W's speed bottleneck." The
first bottleneck is about 109 operations per sec (ops) due to serial machines.

(According to Einstein, the speed of light is 3x10 10 cm/sec, which, for a 30 cm

processor length, can only be repeated 109 times). Depending on UIP &DP
paradigms, the second bottleneck was estimated as 1012 ops (about thousand times

235

I
I

faster than the first), for most parallel digital computers are operated under a lock-
step and clock-cycle mode. The fact was benchmarked as follows: For both I
Transputers and Hypercubes, the communication overhead costs retarded the
speedup factor which was revealed itself when plotted against the number of
processors [2]. The tradeoff between the communication cost and the actual 1
execution time will have a diminishing return as the number of processors
increases, see Fig. 1. 1

4.
4-

Trin 3.5.

3.5-3
3-

2.5
2.S

2- Spee up 2 I
Speedup 1.S. .. S

I-• Tatint I

0.5s O.S

010
1 3 S / 7 9 II 13 15

Number of Nicis
Number of T,2nsputers I

FIGURE 4. Speed up for Torid.l Transputef Nctwork FIGURE S. Spucd up f(o Intc1's 4 ypcculc iWScWz

However, before we present our solution in this case, we want to motivate
the importance of global optimization constrained by a minimum communication, 1
especially in the context when one has the advantage of a using a large parallel
computer architecture. For example, ARPA has produced a class of Touchstone with
upto 532 processor nodes. It belongs to the class of Multiple Instruction Multiple
Data (MIMD) processors under a lock-step and clock cycle operation. Other style
computers exist, e.g., the sixth gen artificial neural networks (ANN) of ten billion
processors working asynchronously without clock cycle, nor lock steps. A brain-style

computes at the speed of Mega-Cray 106x109 ops=10 15ops (estimated for 1010

neurons x 104 synaptic memory capacity x 10 ops each). We donot feel the need of a I
clock cycle for the lock step communication and execution, because, if we hear tick-
tock in our brain as we think, we got to see a psychiatry. Then, what is the
underlying mathematics (of such a massively parallel Brain-style computing) that
seems to break the barrier of the second bottleneck by three orders of magnitude?

We believe that such a principle, if exists, must help minimize the I
communication need in a so-to-speak lossless divide-and-conquer strategy. At this
point, such a strategy might seem to be solely created by the future generations of
computers, but in fact it is mathematically profound and underlies almost all real
world constrained optimizations----management, scheduling, resource allocation,
inventory, logistics, global optimization and the military focus on distributed I
warfare, command & communication[3].

I
2361

In this paper, a theorem of a lossless D&C strategy is given in Sect. 2 for the
LMS global optimization for the first time, and TSP example in Sect.' 3.

2. Theorem of Lossless Divide-and-Conquer

'The least mean square (LMS) kinetic egy E is defined

E (1/2) < MV) > a (I/2)< 1 V 12> (1)

where the angular brackets < > denote statistical ensemble average, the round
bracket (,) the inner product in the Hilbert space. Note that in the continuum
medium the vector velocity V is defined to be proportional to the negative of the
gradient descent force F direction - grad E = F-. dV/dt

While such a vector V is by Hamiltonian definition a locally conservativequantity, the kinetic energy is (intrinsically global) a scalar quantity. In our new
methodology it is crucial to adopt vector V as the linear distributable quantity.

In order to implement properly a divide-and-conquer scheme, one must be
able to utilize a distributed criterion. Mathematically speaking, this means that
ideally one wants to decompose the LMS problem into two LMS problems v _h that
the division is lossless. If this divide-and-conquer is possible recursiveiy, there
must exist two orthogonal projection operators P and Q, such that

P + Q = I, (2)

the identity operator. (It is not trivial and not always possible to construct P and Q as
they must be self-adjoint linear operators.) By such a decomposition of the problem,
one can thus eliminate the cross-correlation between the two parts as follows:

V = IV = PV + QV S A + B, (3)

BE <(A + B, A+B)>/2 (4)

Theorem of Orthogonal Division Errors (ODE)

The divide-and-conquer in two subregions becomes lossless,

<IV 12> = < I A 12> + < I B 12 > + 2 <(A,B)> (5)

when the the boundary resultant vectors: A and B of two subregions representing

237

I
I

the cross talk contribution become vanishes.Proof:
The cross terms <(A, B)> vanishes in two possible cases (1) the deterministic

orthogonality,

(A, B) - 0, (6)

(2) random phase approximation of which the statistical averaged to become zero:

S<AB) 0 (7)

Since

Optimize <IV 12> = Optimize < IA 12> +Optimize < IB 12> + 2Optimize<(A,B)>, (8)

then by construction Eqs(6,7) we have

Optimize <IV12 > = Optimize <IA12> + Optimize<IB12 > (9)

Since- energy by definition is real and positive, the optima over the subregions
guarantee the optimum of the entire region. Furthermore, the orthogonal
decomposition minimizes the communication needs during LMS executions in
each subregion. QEDI

Furthermore, the concept of boundary resultant vector permit an
algorithmically recursive implementation as follows. Given V= A+B, each A and B
can be furthermore decomposed into a+a'" and b+b", etc. In this fashion, one can in I
principle estimate the boundary loss in the divide-and-conquer strategy when the
decomposition is not longer orthogonal.

3. Lossless Divide and Con 1,ier of TSP

A case in point is that of the traveling salesmen problem in which one might
ask: Is it possible to divide the original set of cities into two parts such that a solution
to each part would be useful in obtaining a solution to the entire problem? Suppose
that our purpose is to find an optimal tour once and only once through a set of
nodes (called cities) in any clockwise sense that the sum of the squares of the
distances between nodes is minimal. In Fig. 2 we have divided TSP into 4 quadrants
and used a modified Hopfield-Tank Artificial Neural Network to find a local
optimum solution for each quadrant. Then, we tried to patch together at the
boundary, we discovered that the cut and splice at the nearest neighbor cities
denoted by C was not shorter than another cut-and-splice at the next nearest cities
denoted by D. This is completely against ones intuition. It points out the nonlinear
nature that the total is more than the sum of its parts.

238

1
Solving Large-Scale Optimization Problems by

Divide-and-Conquer Neural Networks

I" I

I

I , ft.' I ' i

itgo . A Aoa pimmtu Aae n• Dvd-

Soat U S

A V A A00

D00

Towr disamu &J11144
Tow AfSuogs * S1011142

-. cal optmum tou r b ased an th e D i lo d Figure S. The optimum lo w, for the 2 ,ty TSP.

Lossless Divide-and-Conquer TSP

Orthogonal Division Error Theorem
2 2 2

minlA+B I =min IAI +min 1B I +min2(AB)

A Pythagoren Theroem

-n a proper division of the original set of nodes into subsets satisfies the
ortnogonality requirement Eq(6).

239

The global minimum is obviously obtained in this six cities along the contour
around both regions. Several comments are given as follows.

(1) When the boundary resultant vectors A and B are not only orthogonal but
also touch each other~, by Pythagoren law, A and B are losslessly replaced by the cut-
and-splice boundary contour pointing from the head and bottom of the arrow vector
A to the head of B.

(2) When the boundary displacement vectors is not orthogonal, then the cross
terms shouldbe also minimized. But the communication cost becomes important,
and could be compounded in a recursive revision of either A or B in its own
subregion. In fact, the antiparallelism (AB) :5 0 is sometimes preferred for the
global minimization.

(3) In other words, the boundary resultant vectors A and B are not orthogonal
division error (ODE) theorem for lossless D & C strategy is necessary but not
sufficient. If min I A 12 were not the best, there is no way to be sure that the total
mini I A+B 12 will be the best, and the theorem is only a strategy to minimize the
boundary correlation and therefore the communication cost.

(4) Once a proper division is secured, the next problem to be addressed is that
of finding optimal tours through the two subsets (induced by the projections P and
Q). This is addressed by the simulated annealing algorithm in Sect.4.

L. Simulated Annealing

The concept of simulated annealing stems from the pioneering work of
Stuart and Donald Geman[5J in 1984, and to work of Kirkpatrick, Gelatt, and Vecchi
[6], published in 1983. The seeds of the endeavors of these scientists were in turn

240

due to the pioneering effort of Nicholas Metropolis, Arianna Rosenbluth, Marshall
Rosenbluth, Augusta Teller, and Edward Teller[7] in 1953. Thus, the fundamental
methodology is at this point in time, forty years old, but the details of its systematic
theory have been addressed only relatively recently. The process is called simulated
annealing because its purpose is to emulate a well-known phenomenon
encountered in condensed matter physics based on statistical mechanics principles.
That specific purpose is the discovery of ground states of systems composed of large

numbers of atoms (typically of the order of 1023 per cubic centimeter).

Simulated annealing as a mathematical concept is of interest in that it
represents a systematic approach to the solution of a large class of nonconvex
optimization problems. Whereas most optimization techniques for deterministic
problems utilize some iterative, deterministic mechanism or strategy, simulated
annealing employs a more global concept which is closely tied to probability theory.
Fundamental to this approach are two notions: state generation and state acceptance.
Note that classical methods invoke only the first part, namely, state generation and
that, therefore, in the case of nonconvex problems, they often yield local rather
than global optima. The key to the success of simulated annealing as an
optimization principle lies in the state acceptance and, in particular, to the proper
coupling of generation and acceptance. Once that is accomplished, one obtains a
theory of convergence for global optima, and the task is therefore that of enhancing
the rate of convergence by appropriately combining certain generation and
acceptance probability distributions. A rigorous convergence theory on
multidimensional lattices has been developed as is evidenced by two papers which
appeared in the Journal of Applied Probability [8][9]. It is possible to utilize this
methodology on continuous variable problems simply by dividing the underlying
space into regions of small size and then construing these subregions as entities to
which the generation and acceptance laws apply.

As originally contemplated, simulated annealing as a mathematical concept
was devised as a sequential algorithm useful for optimizing some energy or cost
functions on a multidimensional lattice. As it was observed that the method was
"slow to converge" recent work has been concentrated upon expediting the process
by utilizing different distributions. For example, thermodynamics dictates use of a
Boltzmann law for both state generation and acceptance, and that works properly in
conjunction with a temperature schedule which is inversely proportional to the
logarithm of time. To enhance the rate of convergence, Szu[12] has recommended
using a Cauchy distribution for state generation together with a temperature
schedule inversely proportional to time, since the variance of a Cauchy random
variable is infinite [13]. Thus, intuition suggests that various parts of the landscape
would be visited more rapidly, since a Cauchy law permits "random (Le'vy) flights
[14]", in addition to (Wiener) random walks. It turns out that one must then be
careful to use an acceptance law compatible with the Cauchy generation law. A

241

recent discovery is that a Boltzmann law is not the proper one to choose, as then the
overall Markov process ceases to be ergodic. One needs to use either an acceptance
law which is temperature independent or one based perhaps on a modification of
the Cauchy distribution [15].

S.S

•Simulated Annealing •Fast Simulated AnnealingI

ca. t atl

L...,....L... ,*.3

the use of such a parallel architecture by dividing the workload among the different
processors. In this way perhaps the speed of the optimization technique would not
be so critical, since the method would be employed by any given processor on only a
small part of the underlying space.

There are indeed two types of optimization problems to be addressed by a
multiprocessor architecture: (1) those which, relative to the optimization criterion,
can be naturally divided into subproblems whose optimal states are directly related
in some manner to the global optimal state. In other words, the global optimum is
some function of the optima for the subproblems and (2) those for which a global
optimum is not achievable in this way, but, nevertheless, there may be some
function of the subproblem optima which yields a satisfactory, though not strictly
global, optimal state (a so-called suboptimal state). Under the second possibility,
another issue arises, namely, that, by changing the objective function itself, one
night be able to convert a problem of type (2) into one of type (1). A primary focus of

242

I
our research is to discover the proper objective functions, if they exist, which are
naturally related to the globally optimal states in the sense that decisions made
locally by the individual elements of a massively parallel architecture are sufficient
to obtain the global optimum, thus obviating the need for communication with any
central processing facility. The use of force rather than energy as an objective
function could be useful here, since force is fundamentally a local concept.

There has been a fair amount of work dating from the 1970's devoted to the
partitioning of directed graphs. Such work may be directly relevant to parallel
simulated annealing. For example, it should be possible to utilize some of the
heuristic procedures given in this literature, together with simulated annealing, to
devise "good solutions" to optimization problems. Thus, efficient hybrid
approaches would be developed which would expedite the search for satisfactory
solutions to NP-hard problems.

Let us illustrate the hybrid approach by appealing to concepts extracted from
papers of the type just mentioned. The first paper to be mentioned is one from
Kernighan and Lin which actually appeared in 1970 [10]. The main problem
addressed in this paper was the following: Partition the nodes of an undirected
graph with costs on its edges into subsets of given sizes so as to minimize the sum of
the costs on all edges cut. Two applications of the methodology developed in this
paper are: (1) Planning of circuit boards and (2) Computer paging properties. We
proceed to some implementation details. Let G be a graph of n nodes of sizes
(weights) wi, 1< i < n, and p a positive number such that 0 <wi < p for all i. Suppose

that C =(cij), 1<i,j< n, is the cost matrix (weighted connectivity matrix). Now let us
define a k-way partition of G. One has k subsets Vi, 1:5i •5k, of vertices of G such that

Vi NVj i= 0, i~j, and such that U vi = G. Furthermore, defining I Vi to be the

number of vertices in Vi, an admissible partition is one for which IV i 15p for all i.

The cost of a partition is just S over all unordered pairs (i,j) with i E Vi , j E V1, and

Vk f"V1 =0. The authors note that minimizing external cost is equivalent to

maximizing internal cost. Furthermore, supposing that kp =n and that one has the
task of partition G into k subsets of size p, one find that the total number of classes to
be considered is (superscript T denotes the transpose):

(1/k!) (n p)T(n-p p)T...(2p p)T
For n=40 and p =10 (k=4), the result exceeds 1020 cases ! Clearly, one should, in this
framework, generally contemplate heuristic solutions. To do so, Kernighan and Lin
first consider two-way uniform partitions, wherein the problem is to find a
minimal-cost partition of a given graph of 2n vertices into two sets of n vertices

243

each. In mathematical terms this may be phrased as follows:

Let S be a set of 2n points, C =(cij, 15ij< 2n. Assume that C i symmetric and
that cii=O for L. The quantity cij is unrestricted in sign. One wants to minimize the

external cost T= 1AxB cab, AUB =S, Ar' B=O, I AI= I BI = n. The essence of the

method is to start with an arbitrary partition (AB) of the set of nodes Z cij and to try
to decrease the initial external cost T by a series of interchanges of subsets of A & B.
Kernighan and Lin note that a minimum cost 2-way partition is derivable from
(A,B) by extracting a certain subset X from A and a certain subset Y from B and then
interchanging the two to -produce an optimal partition (A*, B*). Diagrammatically
this is:

A B A" B*

Therefore, A* = (A'- X)UY, B* = (B-Y) UX, where I X I = I Y I < n/2. They propose
an optimization algorithm for accomplishing this in a systematic manner without
having to consider all possible pairs (X,Y) directly. This whole process (a kind of
divide-and-conquer approach) may clearly be repeated in order to secure a k-way
partition of the original graph G. However, there is an attractive hybrid approach
which would utilize simulated annealing. As noted before, minimizing external
cost for any k-way partition is equivalent to maximizing the total internal cost of the
k subgraphs. This remark is valid, because the total cost for the original graph is
constant. Therefore, one may employ the heuristic mechanism of Kernighan and
Lin for i steps of their procedure, afterwards appealing to simulated annealing to
complete the whole process. The philosophy here is that, once the number of
nodes has been satisfactorily reduced, simulated annealing may be a useful tool
with regard to both its accuracy and speed, especially when fast simulated annealing
is employed. Another viewpoint may also be adduced at this point when problems
such as TSP (the traveling salesman problem) are considered. It seems reasonable
that good, though clearly not optimal, solutions should be obtained through use of
k-way minimal cut partitions, since in TSP one seeks a minimal cost tour.
Therefore once such a k-way partition is obtained via the K-L procedure, it would be
reasonable to invoke "parallel simulated annealing" on the k subgraphs and thus
fuse the results to secure a solution to TSP.

With regard to the TSP in particular, we would finally like to mention some
results of an old paper by Richard Karp [11], in which a probabilistic analysis of
partitioning algorithms for TSP was conducted. Using a simple partition scheme to
divide a rectangle enclosing the original cities into 2k subrectangles each containing
at most t cities, where t was given a priori, he showed the following:

244

There exists a family of algorithms with the property that, for every e >0,
there is an algorithm A(s) in the family such that (a) A(s) runs in tiine C(s) n + O(n
log n); (b) with probability I, A(e) produces a tour costing not more than (1 +e) times
the cost of an optimal tour. Consistent with the philosophy presented here, his idea
was to partition the original region X (a rectangular region enclosing all cities) into
"small" subregions, each of which contau.cs about t cities. Then an optimal tour was
to be constructed within each subregion (using a computer program TOUR), and the
subtours were to be combined to yield a tour through all the cities. Again one can
envision the possibility of using parallel simulated annealing in conjunction with
the Karp algorithms.

A simple heuristic rule of Lin is based on the triangle inequality of
Pythagoren law that A + B > C. Wherever there is a cross of a tour path, one applies
the inequality to uncross the path. This is illustrated with 100 cities over a unit
square with a random tour path giving a total distance of about 50, and reduced to
11.1 when some crosses are untangled. when all are eliminated, one obtained 8.89.

step

€I

.7

sto some T * 1.60080 4MO

It is interesting to apply the algorithm of the lossless Divide-and-Conquer strategy
recursively to obtain a global minimum for 1000 cities. This is an ongoing effort.

245

I
5. Conclusion

As always it seems that all truth is simple in historical hind sight. There is
no exception to such a lossless Divide-and-conquer strtategy. Nevertheless, we
have never come across before. It is possible for us to discover the ODE because of
two basic realizations: (1) forces, such as resultant dispalcement vectors V = A + B in I
TSP, are local quantities; but the energy, such as the squared distance kinetic enegy

E=(1/2)1IV 12, is global and scaler; and (2) the local vector quantity is much easilier to
be distributed with much less communication costs. We shall make several I
intersting philosophical comments before our closing remarks.

(1) Phase transition: This Divide-and-Conquer strategy when is pushed
to the extreme to the microscopic world is not unlike the physical annealing
phenomena in a phase transition. As a working simulated annealing model of
molecular computing for the global minimum crystaline ice state, we must adopt
the force (Vander Waal's Coulomb force) that requires minimum or no
communication need from the central processor (Mother Nature) giving a local I
acceptance criteria7--"against peer pressure (force)", rather than climbing energy
landscape (energy), at a higher temperature than the transition temperature, in
order to make distributed decisions to avoid a local minimum. This fact of local I
force rather than global energy eventually endow the system an ability of finding the
global energy state through a self-organized criticality.

(2) Incoherent Sum: The lossless principle is consistent with our
common sense that IRS is to make US rich in its global optimization fashion while
each individual citizen wishes to be locally optimized to be rich as well. The
theroem says that's possible only when no conflict exists, and hence minimum
communication is needed. Consequently, for a mutual dependent sociology, such a I
complete alignment of national and individual interests is unlikely, as would be
predicted by the difficulty to fulfil the condition of lossless D & C stategy: V = 1i Vi
which guarantees individual optimization giving the global optimization,

Optimize < I V 12> = yi Optimize < 1vi 2>,

because each term is real and positive, (incoherent intensity sum for thoudsand
points of light), when the lossless orthogonal division error (ODE) is satisfied.

(3) NP-Complete: To elaborate further the degree of difficulty of finding a
general solution of lossless D & C strategy, we mention that the whole class of
computationally intractable problems, e.g., the NP-complete problems
(nondeterministic polynomial time) such as the Traveling Salesman Problem(TSP)
or NP-hard problems such as the four-color mapping problem, would be
theoretically solved if one were successful in finding a deterministic procedure for a
lossless D&C optimization strategy. To emphasize the mathematical significance of
this lossless D&C ODE strategy, we wish to address the general challenge as the 11th

246

problem of Hilbert beyond the celebrated ten problems, or the von Neumann
second bottleneck]"oblem, or the Fermat's last theorem (as gave to Mersenne in

1643 that no integers-x,yz exist, such that x2+y2 = z2 satisfies Pythagoren law and z
is a square number and (x+y) is too), of which the boundary resultant vectors A and
B is perhaps a special case. We believe, whatever it is referred to, it remains as one
of the central challenges of 20th Century computer-civilization, and in the 21 st
Century the computerization.

In summary, we have found a mathematical principle for a lossless Divide-
and-Conquer strategy by minimizing the communication need. Also, in this paper,
we have found a nontrivial practical example TSP to illustrate the losses principle.

Acknowledgem,.nt: Support of ONR/ONT program: Engineering of Complex
Systems is acknowledged.

References
[I] Szu, H. ," Sixth Generation Computing Architectures,"in K.H. Zhao et al., eds,
Learning and Recognition: A Modern Approach, Singapore: World Scientific, 59-65,
1988.
[2] SzuH. ,Yeh, C. ,Rogers,G. , Jenkins, M., and Farsaie, A. , "Speed up Performances
on MIMD Machines," Int'l Joint Conf, Neural Networks, IJCNN-92, Baltimore, pp.
Jfl-742, 11-747,1992.
[3] Layman, G. E. , and Egan, J. T., "Distributed System Architecture for U.S. Navy
Battle Group Command Support System,"In 25 Annual Tech. Symposium, Wash.
D.C. Chapter of ACM, Gaithersburg MD June 12, 1986, pp. 103-111.
[4] Foo, S. and Szu, H., "Solving Large-Scale Optimization problems by Divide-and-
Conquer Neural Networks," Int'l Joint Conf, Neural Networks, IJCNN-89, Wash
DC, pp. 1-507,1-511, 1989.
[5] Geman, S. and Geman, D. , "Stochastic Relaxation, Gibbs Distribution, and The
Bayesian Restoration of Images," IEEE Trans. Pattern Analysis and Machine
Intelligence, Vol.6, pp.721-741, 1984.
[6] Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. , "Optimization by Simulated
Annealing," Science Vol. 220, pp.671-680,1983.
[7] Metropolis, N, Rosenbluth, A.W, Rosenbluth, M.N., Teller, A.H., and Teller, E.,
"Equations of State Calculations by Fast Computing Machines," J. Chem. Phys. Vol.
21, pp.1087-1091.
[8] Mitra, D., Romeo, F., and Sangiovanni-Vincentelli, "Convergence and Finite
Time Behavior of Simulated Annealing," Adv. Applied prob. Vol. 18, pp.747-771,
1986.
[9] Anily, S., and Federgruen, A., "Simulated Annealing Methods with General
Acceptance Probabilities," J. Applied Prob. Vol. 24, pp.657-667,1987.
[10] Kernighan, B., and Lin, S., "An efficient heuristic procedure for partitioning
graphs," Bell System technical Journal, Vol. 49, pp. 291-307. 1970.

247

[11] Karp, R., "Probabilistic Analysis of Partitioning Algorithms for the traveling-
salesman problems in the plane, "Math. Oper. Res. Vol. 2, pp.209-224,1977.
[12] Szu, H., "Fast Simulated Annealing," Snowbird Utah Conf. Am Inst.Phys.
(Denker, Ed.)Vol. .pp., 1987;
[13] Szu, H. and Hartley, R., "Nonconvex Optimization," Proc. IEEE, Vol., pp. 1987;
[14] Szu, H. and Hartley, R.,"Fast Simulated Annealing," Phys. Letters, Vol. pp. 1987.
[15] Takefuji, Y. and Szu, H., "Design of Parallel Distributed Cauchy machines,"Int'l

Joint Conf, Neural Networks, IJCNN-89, Wash DC, pp. 1-529,1-532, 1989.

[16] Szu, H, "Colord Noise Annealing benchmark by Exhaustive Solution of TSP,"

Int'J Joint Conf, Neural Networks, IJCNN-90, Wash DC, pp. 1-317,1-3201, 1990.

248

I

A Fault Injection Simulation Testbed for Analyzing
Fault Tolerance Protocols

William F. Dudzik
Advanced System Technologies, Inc

5113 Leesburg Pike, Suite 514
Falls Church, VA 22041

703 - 845-0040

ABSTRACT

This paper describes the role of a simulation testbed in analyzing the non-steady state behavior of a fault
tolerance protocol underlying the design of the Federal Aviation Administration's (FAA) next generation
air traffic control system. The modeled protocol, the group membership protocol, is designed to ensure
the consistency of state information among processors that support fault recovery through hardware and
software redundancy. The modeling objective was to test the robustness of the protocol in the presence
of faults and forward detected problems to the developers for resolution; modeled fault scenarios focused
on performance faults attributable to late or lost messages and timers that did not expire on time or at all.
The model was implemented using GPSS/viTm and successfully identified fault scenarios in which
protocol behavior wasdeemed unacceptable, thereby resulting in modifications to the protocol.

Keywords: Fault Tolerance, Group Membership Protocol, Fault Injection, Simulation

1. Introduction

"This paper describes the combined use of discrete-event simulation and fault tree analysis in evaluating a
distributed protocol, the group membership (GM) protocol, when injected with simulated faults. The
GM algorithm is an essential element of the Federal Aviation Administration's (FAA) Advanced
Automation System (AAS) program for modernizing the air traffic control (ATC) system. A key
requirement of the AAS is high availability. In AAS, downtime (the time critical services are not
available) is limited to only a few seconds per vye. If the GM protocol fails to function correctly and
consistently, then the availability requirements for the AAS can not be meeL

As an essential building block of the AAS fault tolerance scheme, the GM algorithm is designed to
ensure that each member of a group of processors has the same "view" of the state of all the processors
in the group (i.e., working or failed). For example, if a hardware or software element (server) providing
a specific service fails, then that event will be detected by all processors so that appropriate recovery
actions can be initiated. The state consistency problem is a classical problem in distributed computing
whose implementation in AAS must satisfy stringent real time needs.

While it is possible to analyze the behavior of fault tolerance protocols using timelines for simple
applications, this approach becomes infeasible for more complex systems containing multiple processors
and large numbers of concurrent events. Another approach one could pursue is extensive laboratory
testing. Although limited testing in the laboratory has been conducted for the GM protocol, laboratory
time is scarce and it is often difficult and time consuming to instrument failure scenarios, for example,
those requiring multiple and nearly simultaneous faults. Consequently, a well designed and accurate
model of the protocol offers the advantages of assessing many fault scenarios with minimal use of
laboratory resources. Regardless, the objective of our analysis effort was to identify fault scenarios
which resulted in GM protocol behavior that violated the software developer's design guidelines.

The remainder of this paper is organized as follows. Section 2 outlines the operation of the GM protocol.
Our GPSS/vi [1, 2] simulation model of the protocol is described in Section 3. Section 4 summarizes an

249

example of a protocol deficiency that was identified using the simulation. Finally, our conclusions

appear in Sections 5.

2. The Group Membership Protocol

We begin by providing some background information for the GM protocol and then describe its
operation in detail.

2.1 Background

A fundamental concept for ensuring high availability of a computing service is the replication of state
information on separate processors [3]. Upon recognizing the failure of a peer server on one processor,
the surviving servers on the remaining processors have enough state information to resume the work of
their failed peer. In order for this scheme to work in practice, the replicated servers must achieve
agreement on the global state in the presence of random communications delays, component (hardware
and software) faults, and server joins (i.e., the addition of new servers). The purpose of the GM
algorithm is to achieve this agreement. The theoretical work underlying the development of the GM
protocol was performed by Flaviu Christian while at IBM's Almaden Research Laboratory in San Jose,
California [4].

In the AAS design, sets (typically, 2-4) of homogeneous processors (designated groups) provide the
hardwar.e redundancy necessary for high availability air traffic applications (Figure 1).

Processor A Processor B Processor C

F Group of 3 Server
Processors Service RequestProcess ! PrimaryI

Adaess (A -Service Request Response Space (PAS)

Standby Data

AddressAddress s0: I Space l!Se i!I
S (SAS) iý% M(SAS)!i

Common Transmission Medium

Figure 1: AAS Hardware Redundancy Groups

"lransmission of information among processors is accomplished through a common transmission
medium. Both clients which request service and servers that provide service are replicated in designated
partitions of processor memory called address spaces. The primary copy of client or server software
resides in the primary address space (PAS) on one processor while the standby or backup copy (SAS)
resides on a separate processor. In Figure 1, the group consists of three processors A, B, and C with
client PASs residing on A and C', respectively. The corresponding SASs are replicated on B and A.
Clients communicate with servers via service requests and responses are returned in service request
responses. The gray colored arrows from PAS to SAS denote the periodic flow of status information

SThe PASs on A and C provide different services.

250

required to ensure that the SAS is sufficiently current to assume the primary processing responsibilities
in the event of PAS failure. If the client PAS on A or A itself fails, for example, then the PAS
processing will "switchover" to the client SAS on B.

The GM protocol executes concurrently in each group member. It is designed to detect changes in group
composition, propagate those changes, and ensure that the resulting updates are consistent among all
members even in the presence of faults. Since servers are supported by hardware resources, processor
failures imply server loss but the converse is generally not true. In terms of this distinction, the GM
protocol is concerned with the availability of the processors that support those servers. Each group
member maintains a set of state information termed the membership view which contains the
identification (ID) number of each processor it believes is in the group and the time that its membership
view last changed. Generally, the membership view changes whenever processors join or depart the
group. A processor may join a group during initial group formation or after being repaired; a processor
departs if commanded or if it has failed.

Regardless of the cause, membership changes detected by one member are propagated on the network to
the remaining group members via group commands and incorporated into the views of all members at an
agreed upon future time. The effect of processing a group command is that all group members update
their views at (nearly) the same time' and function as if they were a single logical processor.

2.2 Protocol Description

The GM algorithm consists of two processes. The first process (Figure 2a), termed Steady State, detects
the failure of existing group members. Steady State uses periodic timers, called Roll Call (RC) and
Validation (VAL), which are synchronized 2 among group processors. When the RC timer expires, the
VAL timer is started and each group member sends an Accept Roll Call (ARC) message to the other
members of the group. The ARC message contains the membership view of its author and signifies that
the sender is still working. Upon receipt of an ARC message, the recipient notes that the ARC author
has reported. When the VAL timer expires, each processor evaluates its membership and marks as failed
those group members which have not reported. The RC timer is then restarted and the cycle continues.

The absence of an ARC is the mechanism by which one processor infers the failure of another.
Assuming a group of four processors (A, B, C, D), the first validation time (1.0) in Figure 2a shows the
case where all processors (only A's membership view shown) have received ARC messages from the
other three and, hence, have the same membership view. Each group member now waits for the next
expiration of its RC timer. The second validation event shows the case where processors A, C, and D
(only A shown) have received all expected ARCs, but processor B has not received an ARC from
processor C (for example, due to a performance fault) before validation time; as a result, B deletes C
from its view (now ABD) and broadcasts a Process Membership Check (PMC) message.

The PMC message is broadcast to all group members whenever an existing group member updates its
view and indicates that there is a discrepancy among membership views that must be resolved. The PMC
message contains the membership view (membership list plus last change time) of its author. The
author's view is then compared to the receiver's view; if the views are the same no action is taken. If
they differ, we must decide which view is better.

Note that the "atomic effect" of group commands assumes that the clocks of all group members are
synchronized to a specified tolerance.

2 A separate timer synchronization protocol is used to ensure that the clocks for each processor in the
group are in approximate agreement.

251

Membership View Membership View
Author Proc = A j Author Proc z A
Time = 1.0

Time =4.0

ViewTz A B CD V viewsA BCD I _

Time Exire Tier xpies endPMCMs

ARC MSnARC PMC

2a: Stead, Atateoroceosin

C AMembership View
- lTime z 4.0

Grou - A> iView =A B

Mime > >iEw=B
Roll Cal Roi l Call Views Differ

"Timer Expires Timer Expires Send PMC Msg
Send ARC Msg Send ARC Msg

2a: Steady State Processing

ARC ARC AGCD PMCt

AJR Membership View I

Ex o 0 =IA 5 AuthorProc=A
Group Ac R I Time =I i 0w

MemberA AJR

Time

Roil Call Receive AJR Roll Call Add B to Group
Timer Expires Put B in Timer Expires

Send ARC Join List Send ARC
Send AGCDTto B

AJR Membership View
I I= C Author Proc =B

Joining 0 Time = 10
Group ARIC AJR =AGCD o Ve

Member B84

Send MJR Put B in Timer Expires AGCD
Set RC, Val Join List Set AGCD Cancel

Timers Timer AGCD
Timer

2b: Member Join Processing

Figure 2: Group Membership Protocol Timeline

View X is defined as better than view Y if one of two conditions holds: 1) X's membership change time
is more recent than Y's or 2) if their change times are identical, X's membership list is "greater" than Y's

252

when the lists of processor IDs are compared position by position. Zero (indicating absence of a
processor) is considered to be greater than any non-blank entry. For example, let processors A, B, C,
and D have IDs 1, 2, 3, and 4, respectively. View 234 is better than 134 since 2 > 1 and 1230 is better
than 1234 since 0 > 4. 1

To attain view consistency, worse views "conform" to better views as follows. Given that X's view is
better than Y's, first determine if X's view is a proper subset of Y's. If yes, then the processor with
view Y marks as failed those processors with IDs belonging to the view difference1 . In Figure 2a, B's
view (ABD) is a subset of A's view (ABCD) and, hence, processor A deletes C (view difference of
ABCD and ABD). Like A, processor D removes C from its view. Note that to conform to the received
better view (ABD), C must shut itself down. The result now is that A, B, and D have updated and
consistent views (viz.,ABD). If X is not a subset of Y, then the processor with the worse view must fail
itself. It marks itself as failed and broadcasts an Accept Member Depart (AMD) group message. All
processors receiving the AMD message update their views at the same time to reflect the failure of the
AMD's author.

The second process comprising the GM algorithm allows processors to join a group. There are many
special cases. In this paper, we consider the simple case of a processor attempting to join an existing
group. The basic notion is that before a processor can join a group, it must synchronize its RC and VAL
timers with those of the existing group members and receive a copy of the membership views from the
group members.

For th" sake of simplicity, assume that the existing group consists of a single member A which
Processor B wishes to join. As illustrated in Figure 2b, when Processor B receives an ARC from A it
uses the message's time stamp to synchronize its own RC and VAL timers and broadcasts an Accept Join
Request (AJR) message to the group. Upon receiving the AJR, both A and B add B to their join list. At
the next RC time, B sets its Accept Group Configuration Database (AGCD) timer indicating that it
expects to receive a copy of the membership view from A while A transmits an AGCD message to B (A
knows the identity of B from the AIR message that it received.). The AGCD message contains the
current membership view from the perspective of its author. B cancels its AGCD timer upon reception of
the AGCD message and updates its membership view (previously empty) io include A. At this point,
both A and B have the same view (A). B is then added to the membership views of both A and B at
validation time yielding a common view of AB. A PMC message is then broadcast by A.

Depending on the circumstances, several rounds of PMC commands may be necessary to establish
consistent views among group members. Since inconsistencies usually result in removal of processors
and the group has finite size, group equilibrium is achieved quickly. Note that the primary role of timers
within the protocol is passive; if problems are not detected before their expiration, they serve as a "last
line of defense". From a real-time perspective, the values of the RC and VAL timers are envisioned to be
on the order of two and one seconds, respectively.

3. Analyzing the GM Protocol Using GPSS/vi

The approach for analyzing the GM algorithm was straightforward. The first step in the analysis was to
functionally simulate the algorithm using the interactive simulation environment of the GPSS/vi modeling
system. The next step was to develop a systematic fault tree. Initially, our analysis focused on
performance faults affecting the messages and timers underlying the algorithm. We assumed that such
faults would be caused either by delays in the communications network or, more likely, since the
network itself had high redundancy, due to contention delays within processors attached to the network.
Faults affecting a single message or timer were considered first, followed by multiple faults of the same
type (for example, ARC messages received late [after validation time] at both processors A and B) and
finally, selected combinations of faults involving distinct message and timer types. Since the

View difference is the set of processors that are not in both views.

253

combinations of multiple faults was practically unlimited, our initial efforts focused on algorithm
correctness for basic single and simple multiple faults.

The GM algorithm model was verified by replicating the results of three fault scenarios that had
successfully executed in the laboratory environment. Matches between lab and model results provided
evidence that the model correctly represented the algorithm. Matches in this context do not mean that
model and laboratory results were sufficiently close in value as in traditional simulation verification
exercises but instead that the membership views of each processor as projected by the model exactly
matched the corresponding view observed in the laboratory test.

Given a candidate set of fault scenarios, the model was modified to reflect the specific fault(s) being
evaluated and then executed. The effects of lost or late messages (and timers) were modeled by using
suitable delay values to represent message transmissions or periodic timers. Only a few discrete
transmission delay values were of interest in the modeling runs, since an algorithm fault is not triggered
unless a message is received after an arbitrary but fixed delay T. Messages arriving before time T are"on time." Messages arriving after time T are "late." The effect of an on time message is independent of
its exact arrival time. Similarly, the effect of a late message does not vary with the degree of lateness. In
effect, sampling delay times was not necessary which simplified the analysis.

Key model outputs included the membership views of each group member and a detailed trace which
annotated the specific model execution and proved indispensable in verifying that fault scenarios had
been implemented correctly. Model results were then evaluated to detect instances in which 1) no group
member survived, 2) the protocol shut down multiple good (fault free) processors in order to preserve
consistency, and 3) performance could be improved by eliminating redundant messages. Relative to item
1, a fundamental design guideline was that at least one processor should always survive. Item 2 refers to
those cases where the protocol behaves correctly but in a less than optimal (marginal) manner. Results
indicating potential shortcomings with the protocol and candidate fixes were forwarded to the protocol
developers for resolution.

4. Detecting a Fault in the GM Protocol

We now describe a specific fault scenario in which model results led to a modification of the GM
protocol. Assume that processors A, B, and C with IDs 1, 2, and 3, respectively, belong to a group and
that Processor D with the largest ID of 4 is attempting to join the group. Further assume that the AGCD
messages from group members A, B, and C are received late by D (i.e., received after validation time).
The timeline analysis in Figure 3 was reconstructed from the model run. The following discussion
shows that a perfectly functioning three processor group is totally disabled when a fourth processor
attempts to join. Although the GM algorithm meets its stated requirements by maintaining a consistent
membership view, the end result is far from optimal.

As previously described, the joining processor D broadcasts an AJR message to the group members after
synchronizing its RC and VAL timers. At the first roll call after tansmitting the AJR message (labeled 1
in Figure 3a), D belongs to the join lists of A, B, C, and D. At validation time, A, B, and C add D to
their view which is now ABCD, update the membership change time, and issue PMC messages.
Meanwhile, the AGCD timer (scheduled to expire at validation time) for D expires and D believes it is the
first processor in the group to be initialized (since no AGCD messages have arrived). D adds itself to the
group (which previously was empty), records the membership change time, and has view D; D does not
issue a PMC, since it was not an existing group member. D ignores the PMC messages from A, B, and
C, since the received views are not better than its own (D>ABCD). At the next roll call time (labelled 2),
each processor broadcasts an ARC message and receives at least one view that differs from its own,
resulting in another round of PMC messages. A, B, and C each transmit one such PMC while D
generates three PMCs, one for each received view that differs from its own. The membership change
time is the same (last validation) for all processors.

254

Existing 0

Group r
Members z S

AIIB,C W>

Rol Cal Receive AJR Rol Call Add D to No Action
Timer Expires Put D in Timer Expires Group A,B,C Views

Send ARC Join Ust Send ARC Send PMCs are the same
Send AGCD to D

AI ABC A ABCD IvB ABC B ABCD I
IC ABC C ABCDI

AJR

Expected,Joining ARC AJR Lae AGCD'1
Group AR z ~OL5 M

Member C # #

Receive ARC Receive AiR ROl Call AGCD Timner PMC
Send AJR Put D in Timer Expires Expires Received

Set RC. Val Join List Set AGCD Add D to & Ignored
Timers Timer Empty Group

3a: Begin Join Processing

ARC PMC
Existing 0 .
Group PMC 1PC

Members 0
A,B,C, D

Roll Cal PMCs BC PMCs Received &
Timer Expires Received & Processed

Send ARC Processed
A,B.C,D Send .B, C Send

PMCs PMCs

A ABCD View R1 R2 R3 A --
Views B ABCD A ABCD IB

TC ABCD ABCD BCDCCD----
CD D C ABCD BCD CDD DC-

D D D D DD

3b: Continue Join Processing

Figure 3: Model Result Identifies Protocol Deficiency

255

D again ignores the PMCs from A, B, and C, since D's view is still better than the other processors'
views. Upon receiving D's view which is better than their own (D>ABCD) and a subset of their own,
A, B, and C must fail the processors belonging to the set difference ABCD-D = ABC. According to the
protocol, processor failure includes the following three steps: 1) remove the failed processor from your
membership view, 2) update your membership change time, and 3) issue a PMC message. This process
is repeated for each processor to be failed. Processor A fails the first member in the set difference,
namely itself, and shuts itself down. B fails processor A, updates the membership change time, and
issues a PMC with view BCD. B then shuts down the second processor in the set difference, namely
itself, and ceases processing. Similarly, C issues PMCs after marking A and B down with views BCD
and CD, respectively, and then fails itself during the third pass through the shutdown processor logic.
These incremental steps are labeled R I, R2, and R3 in the figure. Because the PMCs issued by B and C
have more recent change times than processor D, D will shutdown after the next round of PMC
messages is processed. The final result is that no group member survives the join process.

This scenario demonstrates that a processor in the act of failing should not issue PMC messages. It is
interesting to note that if the group consists of only a single member (a scenario previously tested in he
laboratory), then the final result is that the joining processor survives. The results of this scenario
together with others highlights what is a common experience; converting an algorithm which works in
principle to one which functions as real software operating on real hardware often requires substantial
effort.

5. Conclusions

We believe that this type of modeling constitutes a valuable application of simulation. The model was
instrumental in identifying cases where protocol behavior was unacceptable (no processor survived
certain faults) or where behavior was correct but undesirable, for example, under heavy workload
conditions where loss of a good processor could be critical. These cases were forwarded to the developer
for evaluation. Their analysis concurred with the modei's results and they modified the protocol to
correct the implementation errors. These corrections were incorporated into the normal incremental
software build cycle and thus prevented problems during the system test phase. Modeling of the GM
protocol also heightened our awareness of the difficulties in implementing protocols devised in a
laboratory environment and not yet extensively tested in the field.

ACKNOWLEDGEMENTS

The development of the model of the GM protocol was performed under contract to the Volpe National
Transportation System Center (VNTSC) in support of the Federal Aviation Administration. We
appreciate the reviews and comments from Mr. Paul Connolly of VNTSC and Mr. Ted Page of the
FAA's Advanced Automation Program Office.

REFERENCES

1. Ball, Duane: GPSS/vi, Proceedings of Winter Simulation Conference, December 14-16, 1992.

2. Schriber, Thomas J: Simulation Using GPSS, John Wiley and Sons, 1974.

3. Christian, Flaviu: Understanding Fault-Tolerant Distributed Systems, Communications of the ACM,
February, 1991, p. 56-78. I
4. Christian, Flaviu: Reaching Agreement on Processor Group Membership in Synchronous Distributed
Systems, IBM Internal Report, October 1989.

25

256

Zfoatively using the Uxxx make

Utility for Peranent and

Temporezyr Changes

David R. Jennings
John J. Reilly

Naval Surface Warfare Center / Dahlgren Division
Strategic and Space Systems Department (K)

Submarine Launched Ballistic Missile
Softvare Development Division (R50)

* April 1993

257

1.0 introduction

The Systems Simulation Branch (K51) is responsible for the
design and programming of large software models, which are
typically composed of hundreds of C and Fortran source files. The
source, header, and executable files are made available to users in
a project directory, which is defined under a common branch
directory. During project development and maintenance the
developer changes at least one file under his account, while the
remaining files are used from the project directory. These changes
are referred to as temporary changes because the changes are not
being applied to the project files. Once the changes are tested
and approved, they are ready for incorporation into the formal
project. In this case, the updated files are placed back in the
project directory and permanent changes are made. The changes are
permanent because they are incorporated into the released project.

The branch chose to use the UNIX' Source Code Control System
(SCCS) for configuration management of the source files and the

UNIX make utility to build the project files. The UNIX make
utility provides a powerful tool to create and update object,
binary, and library files. make accomplishes this by comparing the
dates of the prerequisite files with the target. If any
prerequisite file is found to be more recent than the target,
commands are executed to update the target.

The make utility must be given a series of dependencies to
determine if a target is out of date. Any file which is dependent
on another must be explained via either an implicit rule (.c.o:
means a.o is dependent on a.c) or a dependency statement (a.o: a.h
means a.o is dependent on a.h). The latter case is important since
the dependencies of all header files must be explicitly stated.
These dependencies are usually given in a file named makefile.

However, .make is difficult to use, especially given the number
of sources and the permanent / temporary changes: permanent
changes use all sources, headers and objects in a known directory
structure, while temporary changes combine some files in the
project space with some files in the user's space. Additionally,
temporary changes to a header file may affect files which the user
is not currently editing, thus these files must be retrieved, using
SCCS, into the user's space and re-compiled.

In order to solve these problems and to insulate the
developers from learning make's nuances, K51 developed a set of
tools (scripts) to automatically generate makefiles capable of
handling the temporary / permanent change problem. These easy-to-
use tools provide a powerful, consistent makefile that supports the
branch's development environment. This paper describes the work
performed by personnel in the Systems Simulation Branch (K51) to
enhance the use of make utility and find solutions to the above
problems. Hence it is referred to as the K51 Makefile.

'UNIX is a registered trademark of AT&T.

258

2.0 Capabilities

The K51 Makef ile was developed to give users an easy
interface into a complex UNIX utility. It also does the following:

* creates a consistent makefile for all projects.
* allows target/dependency files to reside in different

directories.
allows permanent changes to be made by updating project
files.

* allows temporary changes to be made in a current working
directory (cwd), automatically compiling and/or linking
the necessary files from project space.

* allows library files to be linked from other
projects/models.

* allows simple, consistent targets (temp, perm, etc.) for
all projects.I allows the capability of updating a driver file and
library file within the same project.

* allows the capability of creating a driver file on the
fly in a cwd, even if one does not exist in project
space.

* displays a concise help screen when make is entered
without a target name.I * supports projects with FORTRAN, C, or a combination of
source files.
allows overriding of makef ile macros from either the make
command line or by UNIX environment variables.

All makefiles and scripts used by the K51 Makefile can
execute in either a Korn or Bourne Shell.

3.0 Makefile Generation

33.1 genmake Command

A utility named genmake was developed to generate or
update a project makefile. The generated makefile is divided into
three sections:

* general macros including those defining paths to
files, temporary directory, project name, target
name, project source files, and project driver
files.

* language macros (C, FORTRAN) and miscellaneous
. macros.

command which includes a file containing all
targets. This file also includes a file of all
needed rules.

I

I 259

3.2 Source/Driver Files

The major purpose of genmake is to add a user's project
file names to a makefile template.

Based on the value of the input parameter arctype
(default is project) and gentype (default is add), file names
(fnames ...) are added to/deleted from the appropriate macro in the
makefile as a function of the file extension. The K51 Makefile
supports the following extensions:

* .c C language
* .f FORTRAN with no C Preprocessor directives
* .for FORTRAN with no C Preprocessor directives

* .F FORTRAN with C Preprocessor directives
i .pf FORTRAN with C Preprocessor directives

When files are added the entire list of files is sorted
if the input parameter sort is set to yes (the default).

If the input parameter srctype is set to driver then the
files are added/deleted from the DRSRC macro. It is assumed that
one or more of these files are combined to produce a driver for the
project's library file (.a file) either in project space, in cwd,
or both.

4.0 make Command

After generating a makefile, targets can be generated or
updated using the make command. The general form of the command
used with the K51 Makefile is

make [makeflags] (target] [macro definitions]
Many flags are available; however, only a few are most commonly
used:

* -e allows environment variable definitions to
override the makefile's macro definitions.

* -f specifies description file (default is makefile
or Makefile).

* -n displays commands but does not execute them.
* -p prints the complete set of macro definitions.

The target has been defined for all K51 makefiles to include
* perm
* temp
* drivert

Each of the above is described in the sections that follow.

4.1 make perm Command

The purpose of the make perm command is to update the project
files. When the user executes the make perm command in the project
directory that contains makefile, a UNIX shell script (permsopt) is
invoked with all needed values input via positional parameters.

260

Project dependency information is defined first in the file
makefile.dep, which is included in the user's makefile. This is
the heart of the K51 Makefile, and the information in this file
must be correct for both permanent and temporary changes. The K51
Makefile can accept the project and driver source files either
under the control of the Source Code Control System (SCCS) or as
ASCII text files. The dependency file (makefile.dep) is composed
of five parts:

* header information.
* source dependency information.
* source object files list.
* driver dependency information (optional).
* driver object files list (optional).
The header information contains target, project, date, and

user information. To create file dependencies all source files
must be processed to determine all references to header (.h) files.

After the dependencies are found, they are processed based on
the prerequisite file's extension via an awk script and placed in
the dependency file. The full path to the object files are then
listed under the macro OBJABS.

If the project co-rains a driver, driver file dependency
information is appended to makefile.dep. They are computed like
the source file generation f.apendencies, except the object files
are listed under the macro OBJDRV.

After the dependencies are computed, the object files and
target are defined. The K51 Makefile supports the generation of
both a binary target (all object files are linked to form a
executable image) and a library target (all object files are placed
in a random library). If the project contains a driver which calls
functions from a library, it is created/modified after the target
is updated.

4.2 make temp Command

The purpose of make temp is to update local, temporary files
without changing the project files. The project's makefile must be
present in the cwd to make the temp target. When the user executes
the make temp command, a UNIX shell script (tempsept) is invoked
with all the needed values input via positional parameters.

Since it is possible that project files would be changed if
the user executes make with a makefile.dep file from the project
directory, a test is made to prevent this. Also, the user has the
ability to force compilation of files other than those determined
to be out of date. This is useful when changes to compilation or
preprocessor flags are desired.

Dependencies are computed in the 2wd and placed in the local
makefile.dep file. This contains the same information as the
project makefile.dep, except targets are defined to produce local
versions of the project object/executable/library files.

Next all header files in the cwd are examined to determine if
any project source files are dependent on them. It is crucial for
this to be done so that any change to a local header file will

261

force compilation of a project source file upon which it depends.
The project's makefile.dep file is used to determine this..

For all needed source files, a copy of the file is placed in
a temporary directory and the C Preprocessor is used to determine
all dependencies. Finally, the object file list of those in the
cwd is appended to the end of makefile.dep, under the macro OBJABS.
If a binary target is generated, the full path to the object files
that are not generated in the cwd are listed, too. This is not
needed for library targets, since the project library is linked
instead.

If the project contains a driver, driver file dependency
information is appended to the makefile.dep in the cwd.

After dependencies are computed, the object files and target
are defined. The K51 Makefile supports the generation of either a
binary or library target in the cwd. The target is dependent on
all source object files (either in the cwd or project space) and
the optional, external libraries. If the base name of the external
library is in the cwd, the library in the cwd is used in lieu of
the external library. If any of the object files are older than
the corresponding source files (either in cwd or project space),
then the source file is compiled to produce the object file. If
any of the object files or the external libraries are newer than
the -target, the target is made by linking the object files with the
external libraries, or by combining the object files to form a
library in the cwd. If the project contains a driver which calls
functions from a library, it is created/modified after the target
is updated.

4.3 make drivert Command

The purpose of this target is to create an executable driver
in the cwd. Dependencies do not need to be defined since it does
not use the makefile.dep file. The user must have the appropriate
driver source or object files in the cwd before making this target.

This target is useful for users who wish to create drivers on
the fly, using the project's library file. Different drivers can
be created for different purposes, without changing the project's
files.

5.0 Summary

The K51 Makefile was designed to enhance the effectiveness of
using the basic UNIX make utility. It meets the needs of
programmers who wish to maintain project files, test temporary
changes without changing project files, and use the powerful make
capabilities without the inconvenience of having to deal with
creating and updating the makefile. The genmake utility automates
adding and deleting source file names from the makefile.dep file.
However, the user is still able to edit his makefile and modify
previously defined macros. The burden of dealing with the
makefile's syntax and keeping the dependencies up to date are

262

I hidden from the user. As long as the macro containing the source
file names is kept up to date (using genmake), files upon which the
source files are dependent are automatically generated and included
in the makefile. By entering simple commands (e.g.j make perm or
make temp), the user can quickly update his project files or test
new files with his project without affecting the project files.

2I
I
I
I

Ii

263

appendix A

Appendix A References

1. Cummings, M., Jennings, D., NAVSWCDD, KS5 Directory and File
Naming Conventions, 27 May 1992.

2. Jennings, D., NAVSWCDD, 751 Makefile User Guide, 11 March
1993.

3. Jennings, D., NAVSWCDD, Make Workshop Notes, 30 November 1992.

4. Reilly, J., NAVSWCDD, K51 Makefile Template User's Guide, 27
February 1992.

264

I

Utilization Bounds for Tasksets with Known Periods

Dong-Won Park Swaminathan Natarajan Arkady Kanevsky

Department of Computer Science
Texas A&M University

College Station, TX 77843-3112
(409) 845-8287, swarniOcs.tamu.edu

Abstract

Fixed priority scheduling is commonly used to ensure that periodic tasks will be able to meet
hard real-time deadlines. There are two major approaches by which we can guarantee that a given
taskset can be scheduled according to some fixed priority assignment: utilization bound checks,
which check the total expected processor utilization, and do not require detailed information about
the taskset; and exact schedulability checks, which use detailed information. In this work, we present
a technique for determining period-specific utilization bounds, which use task period information,
generally available at design time, but not task computation time information, which is hard to
determine accurately. The technique we use for determining the bound is an innovative approach
which makes use of linear programming.

1 Introduction

Scheduling hard real-time peric 4 ic tasks using system utilization bounds was first developed by Liu
and Layland [8]. This technique has gained popularity as an approach to designing predictable real-time
systems. They analyzed the rate-monotonic scheduling algorithm, in which higher priorities are assigned
to tasks with shorter periods. They showed that for this algorithm, all tasks were guaranteed to meet
their deadlines provided their combined utilization of the processor did not exceed a certain level (the
worst case utilization bound). They also showed that this algorithm is optimal among all preemptive
fixed priority assignment algorithms for scheduling periodic tasks, for the case where task deadlines are
coincident with the end of a task's period.

Subsequent work on this topic has brought up several interesting points:

Lehoczky, Sha and Ding suggest that the average case behavior of this algorithm is substantially
better than the worst case behavior[6]. They showed that the behavior of this algorithm is strongly
dependent upon the relative values of the periods of the tasks comprising the task set. This
suggests that if we take advantage of information about task periods, we could obtain a taskset-
specific utilization bound which would be much higher than the general bound derived by Liu and
Layland.

* Leung and Whitehead introduced a new fixed priority scheduling algorithm, the deadline-monotonic
algorithm, in which higher priorities are assigned to tasks with shorter deadlines[7]. They proved

265

that the deadline-monotonic algorithm is optimal for the case where tasks have deadlines that
are at or before the end of their periods. This suggests that in order to deal with more general
situations, it would be useful to be able to derive utilization bounds for priority assignments other
than just the rate-monotone priority assignments.

In this work, we develop a technique to determine the utilization bound for a specific task set, where
we know the period and deadline of each of the tasks, but we may not know the task computation time.
This is the most common situation, since task periods and deadlines depend on the characteristics of
the application and are usually fixed at design-time, whereas computation times are very difficult to
determine, even after the actual application code has been written. Our technique is applicable to any
arbitrary fixed priority assignment, and to situations where some tasks must be complete before the end
of their periods, in which case the Liu and Layland bound is not applicable.

This problem fills an important gap between the worst case bound which does not take any task
information into account, and exact schedulability tests [6], which require complete information about
the task set. This problem is an important one in the design of real-time systems. In general, the arrival
rate of each periodic task is fixed at design time. However, it is difficult to determine the computation
time of tasks: the computation to be performed may vary from one arrival to the next (it may be data-
dependent); various system features, such as interrupts, cache memory, virtual memory, 1/O, message
transmission over networks, resource availability may all cause variations in the execution time of tasks.
This difficulty is uiually overcome by determining an upper bound on task computation times, and
scheduling for the worst-case situation when each task requires this maximum time. However, it may
not even be possible to determine a useful worst-case bound in many applications, such as radar tracking,
where the computation time depends directly on the number of objects being tracked. Therefore, it would
be very useful to determine a utilization bound which takes into account the specific task periods, but
does not make assumptions about task computation times. Also, a utilization bound has the advantage
over an exact schedulability criterion that it can be used to perform simple schedulability checks at
run-time, when tasks may have transient overloads.

This paper is organized as follows: Section 2 develops our technique for determining optimal utiliza-
tion bounds for tasksets with known periods. Section 3 discusses some of the ways in which our results
can be used. In section 4, we present some examples and simulation results to show utilization bounds
obtained by our technique. We conclude the paper in section 5.

2 Period-specific Utilization Bound

In this section, we develop a technique to derive the utilization bound for a taskset in which the periods
of all the tasks are known, under a scheduling algorithm based on fixed task priorities.

2.1 System Model and Objective

We consider a set of periodic tasks with each task having a deadline before or at the end of its period.
We consider preemptive fixed priority assignment where each task receives a unique priority, and higher
priority tasks can preempt any lower priority task. Priority assignment is done at design time before any
tasks are scheduled. We assume that task periods are known at design time, however task computation
times are not known.

266

Let rT, 7.... ,r. be the taskset sorted in the decreasing order of the priorities to be scheduled by
preemptive fixed priority assignment. Let T1 , T2,.. ., T. be the periods of the tasks of the taskset, and
let D1 ,D ,...,D, be the deadlines of the corresponding tasks, where each D, _< T7. Let Bm be the
minimum utilization bound that guarantees the schedulability of rm, and let C1 , C2 ,. . ., C. be a set of
positive computation times of tasks Ti,...,Tm that achieves that bound. We will only analyze the case
when all tasks are initialized at the same time, since Lehoc-ky proved that this is a critical instance of
the taskset. That is the worst case scenario when the demand for computation time is the largest.

Our objective is to determine the exact Period-Specific Utilization Bound (PSUB), such that all tasks
are guaranteed to meet their deadlines if their combined utilization is less than or equal to this bound,
and for any utilization greater than this bound there exist a possible set of computation times for which
the taskset is not feasible.

2.2 Determining the Period-Specific Utilization Bound

We propose a technique based on linear programming to determine period-specific utilization bound.

lemma 1 There is no idle processor time prior to the first deadline of task rT m.

Proof: Assume that there is a 6 idle time prior to the first deadline of the task rm. Then even with the
increase of computation time Cm by 6 task Tm will still meet its deadline, but the utilization bound B,
increases. Hence, this violates the assumption that the set of computation times achieves the minimum
utilization bound BnE. Since the first deadline of Tm is the critical instance of the task Tm, the lemma
follows.

0

Next we show that all tasks with higher priority that arrive before the deadline of task r. must
complete their execution before the deadline of task T.m in order for Bm to be minimal.

lemma 2 All tasks with higher priority that arrive before the deadline of task rm must be finished before
the deadline of task Tn.

Proof: Assume that a request of some task r1 with priority higher than rm (so i < m) finishes after the
deadline of Tm of its critical instance. Let 6 is the amount of computation time task T- is executed after
the deadline Dm of task Tm. There are two possible cases.

Case 1: If Ti 2_ Din, then since the task Ti is still executing after the deadline of task Tin, there is no
time for lower priority task Tm, to execute at all. Hence, task rm does not has any computation time or
the taskset is nonschedulable. In both cases we have contradictions to the assumptions.

Case 2: If T < Din, then we create a different set of computation times that reduces utilization Bm
but is still schedulable. We simply reduce the execution time of i" by 6 and increase the execution time
of rm by the amount of time freed up by task ri. So new computation times C,' and C,. of tasks ri and
Tr becomes,

267

C ,,. +6 x L-w.

"This transformation preserves the schedulability of the system. Hence, the new utilization of the
"sytem IV. = B,. + Y7 r'-(Ti x LPJ - T.). Since the term in the last parentheses is not positive, new
utilization can only be smaller or equal to the original one. This violates the assumption that B,. is
minimal and the lemma follows.

Corollary 1 =-=1 Ci, x [f 1 = D,..

As the consequence of the above we have the following theorem.

Theorem 1 The utilization bound Bm for the schedulable task rm can be achieved by the following
procedure:

Minimize
ini

subject to

for 1<j5m-1 and 1<1< L.iJ, 'nc x >l :lxTi,
i=T1

and

Cix ,l = Di,

and
for l<i<m, Ci>O

Proof: The first set of equations expresses the constraint that there should be no idle time in the system,
as proved in lemma 1. The second equation expresses the constraint of lemma 2, that there should be no
overflow at the time Din. The third equation simply constrains execution times to be positive. Thus this
system of inequalities determines the worst-case combination of computation times which meets these
constraints, and has the lowest combined utilization. 0

Notes:

* We do not need any additional constraint to express the idea that r,. meets its deadline; it is
automatically ensured by lemma 2.

* Though these inequalities seem complicated, in fact they are identical, but opposite to the inequali-
ties in the exact schedulability condition developed by the Lehoczky, Sha and Ding [5] i.e. the exact
schedulability criterion has < where we have Ž symbols. This is because we are expressing the
idea that the task arrivals will at least consume all the available time (no idle time), whereas they
are ensuring that all the arrivals will complete within that time, ensuring scheduling feasibility.

268

* This bound merely ensures that r. will meet its deadline as long as the system utilization does
not exceed this bound. It does not give similar assurances for the other tasks. We obtain this
assurance by iterating this procedure over all r,.

Theorem 2 The period-specific utilization bound PSUB for the system is the smallest Bi for each task
T, such that

PSUB = mainB,
m=1

Proof: Since PSUB < Bi for all 1 < i < n, all tasks ri are guaranteed to meet their deadlines. The
bound is tight, since there exists some task mi for 1 <k < n such that PSUB = B&. By theorem 1, this
task rk does not have any idle time. 0

Hence, we can find the PSUB by solving n linear programming problems to determine the utilization
bound Bm for each task.

2.3 Discussion

The technique we have outlined above is significant because it enables us to obtain a utilization bound
test for any arbitrary fixed priority assignment algorithm. Moreover, for the special case of the rate-
monotonic scheduling, it gives us a higher (tighter) bound for specific tasksets than the more general
Liu and Layland bound.

In addition to this, there is another, broader significance to this technique. To date, analytical results
about the rate-monotonic and other fixed priority scheduling algorithms have followed the techniques
introduced by Liu and Layland, and developed further by Lehoczky, Sha and the Carnegie-Mellon group,
of identifying and analyzing specific worst-case situations. A significant aspect of our result is that it
opens up an alternative door to analyzing the behavior of the system, based on using optimization
techniques to identify worst-case behavior. The general approach of setting up constraint equations to
model system parameters, and using optimization to derive boundary conditions, is a highly extendible
one, and we are already currently using it to solve other similar problems of interest. We are very
optimistic about its potential as an alternative analytical tool.

There are several different algorithms for solving linear programming [2, 4, 3]. The best of them
gives polynomial algorithms such as [4, 3]. However, the potentially high time complexity of linear
programming is not a problem for our application, since we are determining utilization bounds off-line,
at system design time.

3 Applications of the result

There are many different ways in which this result can be applied:

* For rate-monotonic scheduling, if we have a taskset with known periods, we can derive a utilization
bound and use it to check for scheduling feasibility, even if exact computation time bounds are not
available. This technique can also handle some situations where tasks must be completed before
the end of their period, in which case the Liu and Layland bound is not applicable.

269

"* Occasionally, we may wish to assign non-rate-monotonic priorities to some tasks; for example, we
may wish to raise the priority of some low-frequency, high-criticality task to ensure that it will
not miss the deadline even in overload situations. We can use this technique lto obtain utilization
bounds and guarantee schedulability in these situations.

"* System designers may have flexibility in choosing task periods. For many applications, such as
monitoring and data acquisition, the requirement is simply to 'sample at least every 25 seconds'
etc. In these cases, system designers may be able to adjust task frequencies in such a way that
the utilization bound is increased (select harmonic frequencies). For example, if other tasks in
the system have a period of 12, choosing a period of 24 may lead to a much higher utilization
bound than choosing period to be 25. Thus, contrary to intuition, we may be able to get better
schedulability while also increasing system performance. We develop this theme further in examples
in the next section, and analytical results on thi topic can be found in [9].

" In some cases, we may have some (incomplete) information about computation times. For example,
we may know the minimum computation time for some of the tasks, and perhaps exact computation
times for some others [1]. By modifying the constraint equations appropriately, it is possible
to derive progressively better bounds as more information is known about the system, thereby
increasing the range of systems which can be guaranteed.

" In addition to these design-time applications of the bound, it can also be used to check schedula-
bility at run-time. Sometimes, the computation times of tasks may be known only at task arrival
time when the input data size is known (e.g. radar tracking, where the processing time may depend
on number of targets). Utilization bounds can be used to check schedulability by keeping track of
the combined processor utilization of all the tasks in the system.

"* The individual task utilization bounds can themselves be useful to detect which tasks may overrun
in particular overload situations. Careful design can also ensure that critical tasks are less likely
to miss iheir deadlines, by adjusting priorities so that their task utilization bounds are not the
critical ones.

4 Examples and simulation

We present some examples and the result of simulation in this section.

Table I shows the concept of individual task utilization bounds. Task 2 has a bound of 83.33%. This
bound occurs when the computation times of task 1 and task 2 are 100 and 200 respectively. Similarly,
we show the bounds for tasks 3 and 4, and the corresponding worst-case computation times. Of course,
the computation times of lower priority tasks are irrelevant in determining the bound for higher priority
tasks. The table illustrates that task 4 is safe as long as the system utilization is below 98.37%. The
task 2 may be threatened if utilization of T1 and r2 exceeds 83.33%. Also, task r3 may be threatened
if combined utilization of ri, T2 and r3 exceeds 83.07%. Thus, all tasks are guaranteed to meet their
deadlines if their combined processor utilization is equal to or less than 83.07%.

Table 2 shows the results of some simulation studies for determining period-specific utilization bounds
for randomly generated tasksets. Task periods were uniformly distributed between 20 and 2400. The
table shows the minimum, average, and maximum PSUB for the several tasksets generated. It should be
noted that uniform distributions are not likely to produce tasksets with harmonic frequencies, particularly

270

for large taskeets. In contrast, in real systems, frequencies are multiples of some basic clock cycle, hence
they do tend to be harmonic and clustered.

I TaklPeidliCD. B2 C. I B3 ICD, B4
n 300 100 5 _

T2 400 200 83.33% 200 _

8 605 any 190 83.07% -a80
'74 1190 any MnY 10 98.37%

Table 1. An example illustrating Optimal B, and their C, in the critical zone

Number of amivimm ierage mazimum
Tasks u(2/ - 1) __PSUB PSUB PSUB

3 77.98% 78.69% 87.47% 99.31%
5 74.35% 77.15% 82.70% V _9457%

10 i 71.77% 73.79% 77.63% -87.22%
20 70.53% 71.85% 73.91% 77.01%
50 69.80% 70.49% 71.16% 71.78%

Table 2. Simulation Result : Period Range 20 - 2400

5 Conclusion

Our technique fills an important gap between the worst-case schedulability test which does not take any
task information into account, and exact schedulability tests, which require complete information about
the taskset. System designers can use this technique to obtain a better check of scheduling feasibility.
An additional major benefit of our technique is that it opens up an alternative approuch based on
linear programming to analyzing the behavior of fixed-priority scheduling. We are optimistic about the
potential of this approach because of its easy extensibility to a variety of scheduling problems.

6 Acknowledgement

The authors wish to express their sincere appreciation to Dr. Wei Zhao for his comments throughout
this work.

References

II] T. P. Baker and A. Shaw. The cyclic executive model and ADA. Real-Time Systems, 1:7-25, 1989.

[2] G. B. Dantzing. Linear Programming amd Extensions. Princeton University Press, 1963.

271

I

[3] N. Karmarkar. A new polynomial time algorithm for linear programming. Combinatorica, 4:373-395,
1984.

[4] L. G. Khachian. A polynomial algorithm in linear programming. Soviet Math. Doki., 20:191-194,
1979.

15] J. P. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary deadlines. Proc. IEEE.
Real-Time Systems Symposium, pages 201-209, 1990.

16] J. P. Lehoczky, L. Sha, and Y. Ding. The rate-monotonic scheduling algorithm: Exact charac-
terization and average case behavior. Proc. IEEE. Real-Time Systems Symposium, pages 166-171,
1989.

[7] J. Y.-T. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of periodic real-time
tasks. Performance Evaluation, 2:237-250, 1982.

[8] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard real-time
environment. JACM, 20:46-61, 1973.

[9] R. Menon, M. 3. Kim, A. Kanevsky, and S. Natarajan. Improving safety margins in rate-monotone
scheduling. Navy Complez Systems Engineering Synthesis and Assessment Technology Workshop,
pages 371-390, 1992.

272

A Stochastic Control Approach to Combined
Task-Message Scheduling

in Distributed Real-Time Systems*

Dar T. Pengt and Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

SThe University of Michigan
Ann Arbor, MI 48109-2122

Abstract
Using a stochastic control approach, we address the combined prob-

lem of scheduling both periodic tasks and inter-task messages in dis-
tributed real-time systems.

First, the concurrent execution of tasks and processing of messages
are modeled as a sequence of continuous-time Markov chains. Then, the
combined task and message scheduling problem (TMSP) is formulated
as a Markov decision process to minimie the expected number of tasks
missing deadlines. Both centralized and decentralized solutions to the
TMSP are derived using the dynamic programming technique.

For the centralized case the global, up-to-date information on the
execution of tasks and processing of messages at each computing node
(CN) is assumed available to all other CNs so that an optimal schedul-
ing decision can be made. For the decentralized case, however, each
CN makes scheduling decisions using only its own local information
and other CNs' information which are periodically broadcast. Ius-
trative examples are presented and optimal broadcast frequencies are
determined.

Index Terms - Centralized/decentralised task scheduling, task dead-
lines, Markov decision process, one-step delayed sharing information
pattern, probability state, stochastic control, dynamic programming.

*This work has been supported in part by the Office of Naval Research under Grant
No. N00014-g2-J-1080. Any opinions, findings, and recommendations expressed in this
publication are those of the authors and do not necessarily reflect the view of the funding
agency.

tCurrent address: Microelectronics and Technology Center, AlliedSignal Aerospace
Company, 9140 Old Annapolis Road, Columbia, MD 21045. E-mail: dtp~batc.allied.com

273

1 Introduction

In a real-time system, the normal workload is composed of a set of periodic

tasks, which is known a priori and usually pre-assigned to the computing nodes

(CNs) of the distributed system for execution. Generally, these tasks commu-
nicate with one another to accomplish the overall mission, and inter-task com-

munications introduce precedence relations among the corresponding parts,

called activities, of the communicating tasks. Owing to its data-dependent
conditional branches and loops, an activity usually takes a random amount of

time to complete.
The main objective of this paper is to formulate and solve the problem of

scheduling both periodic tasks and inter-task messages in a distributed real-
time system such that the long-term expected number of periodic tasks missing
deadlines is minimized.

Our combined task and message scheduling problem (TMSP) deals with

each CN's decision on the execution of its periodic tasks as follows:

D1. Which of ready activities in a CN should be executed next if the number
of free processors at the CN is less than that of ready activities?

D2. Which of the messages arrived at a CN must be processed next?

D3. While waiting for a specific message to arrive, the CN either continues
to wait for the message or abandons the waiting and executes, instead,

a certain default activity.

D1 and D2 are typical problems addressed in the scheduling domain, while

D3 needs further elaboration. As mentioned before, periodic tasks commu-
nicate with one another for synchronization and information exchange. The

communicating partners involved are usually blocked (e.g., [14]) until the com-
munication is completed, meaning that no activities requiring the information
are allowed to continue. This blocking communication scheme could result
in a situation where one or more of the communicating partners are delayed

indefinitely (until the end of their period) waiting for a message which may

never arrive. This could be due to, for instance, the failure of the sending CN
or a communication link or termination of the replying task. To ensure the

timely completion of each task, there must be a provision for a communicating
partner to carry on its execution even in the absence of the requested infor-

mation. Of course, to compensate for the missing information, some form of I
default activity should be invoked. This default activity introduces an extra

274

computation load to the corresponding CN. It is D3 that deals with the deci-
sion on whether to wait for an outstanding message or to immediately execute
the default activity and use the execution results instead.

Notice that D3 can equally well be interpreted as a CN's decision between
two tasks. That is, while executing a task, called a primary, the CN either
continues to execute the primary or abandons the primary and executes, in-
stead, a certain replacement task. For instance, we may use the fifth control
law as the primary and the third control law, which is less accurate but needs
less time to complete, as its replacement. Dl-D3 are actually three depen-
dent parts of a single problem, since neither of them can be solved without
considering the others.

For a set of independent periodic tasks each with fixed execution times, the
rate monotonic scheduling algorithm [7] has been rigorously studied [15, 8].
Liu et al. [91 considered using imprecise computation results as long as the
mandatory'part of the task meets its deadline. To the best of our knowledge,
however, the TMSP, which includes dependent periodic tasks and random task
execution times, has not been addressed in the literature, perhaps because of
the difficulty associated with it [12].

Based on the continuous-time Markov chain (CTMC) model of task ex-
ecutions, we will first transform the TMSP into a Markov decision process
(MDP) [13]. The MDP is then solved with the dynamic programming (DP)
technique [2]. As described in [11], the CTMC model is built typically via tlhe
construction of a generalized stochastic Petri Net (GSPN) [10].

The rest of the paper is organized as follows. In Section 2, we show how the
notion of default activity is modeled in the GSPN, and then describe briefly
the method of [11] to build the underlined CTMC model. The centralized
TMSP is formulated and solved in Section 3. In Section 4, we solve the de-
centralized TMSP for which each CN periodically broadcasts its local state to
other CNs. Using this solution, we also identify the optimal frequency of state
broadcasts. For both centralized and decentralized TMSPs, the computational
complexities of the proposed solution algorithms are also addressed briefly in
Sections 3 and 4. Finally, concluding remarks are made in Section 5.

2 The System CTMC Model

Since the state-space approach is to be used to the TMSP, we need to show
first how the system CTMC model is constructed. We begin with the GSPN

275

2

model of the default activity. Then, a typical method of [11] to construct the

CTMC model is briefly described.

2.1 GSPN Model of Default Activity

A default activity is extra work that a CN can choose to perform instead of

waiting for an outstanding message. To ensure not to waste the computing

resource in a CN, default activities are implemented as follows. While waiting

for an outstanding message x, the CN will execute all ready activities including

the default activity R, provided that there are enough free processors in the

CN. Otherwise, the CN may or may not choose to execute R.. Then, the CN's

next action will depend on the following two cases:

C1. R& is started and completed before z arrives. The CN uses the results

of R.,and proceeds as if the precedence constraints imposed by z were

met. No message is sent back to unblock the communicating partner
from which x was originated.

C2. x arrives before completing (starting) R,. The CN stops executing (start-

ing) R., immediately processes x and, if needed, sends a message back
to unblock its communicating partner.

The GSPN model of a default activity is shown in Fig. 1, where the typical

communication primitives SEND-RECEIVE-REPLY (Fig. 1(a)) and QUERY-

RESPONSE (Fig. 1(b)) have been used. Notice first that a "control place"
has been created in the sending (querying) side to assure the CN be unblocked

by either receiving r (t) or completing RP (Re), but not both. Second, un-

like SEND-RECEIVE-REPLY, the task being queried is not blocked by the

QUERY request (Fig. 1(b)). Third, if the receiving CN in Fig. 1(a) gives up on

waiting for message s and completes the default activity R., then the sending

CN will eventually be forced not to wait for the associated reply message r,
which will never arrive, by executing the default activity Rt. On the other

hand, if message s arrives before R. is completed then, from C2, the receiving

CN must switch immediately to processing s provided there is a free processor.

2.2 Constructing the System CTMC Model

Consider a distributed real-time system, where the tasks have been pre-assigned

among the set {Nk : k = 1, 2, -.. ml of m CNs. Since each task repeats itself

at regular intervals, it is sufficient to solve the TMSP within the planning cycle

276

I
I

I = 10, L) only, where L, the length of I, is the least common multiple of all

task periods. For simplicity, we assume that each task is invoked simultane-
ously at the beginning of I and must be completed by its next invocation time;
otherwise, it will simply be discarded. For completeness, a typical method 1111
to construct the system CTMC model is briefly reviewed in what follows.

The CTMC model to be built is described by its state space and state tran-
sitions. Each state represents a particular stage of the concurrent executions
of tasks on all CNs, whereas a transition represents either a task invocation
(time-driven transition) or the completion of an activity (event-driven tran-
sition). Consequently, the resulting CTMC model is composed of a sequence
of I CTMCs, where I is the number of distinct task invocation instants in I.

Within each individual CTMC, the system evolution is determined only by
the event-driven transitions representing the completions of activities.

The CTMC modeling procedures are summarized as:

"" To alleviate the problem of state space explosion, contiguous stretches of
executable codes are combined, whenever possible, to build the smallest
number of activities while preserving all precedence constraints among
tasks and the expected task execution times.

"* The GSPN is used to model the concurrent execution of activities and
their precedence constraints. The resulting GSPN model is then trans-
formed into a sequence of CTMCs by performiag reachability analysis
on the GSPN, and replacing each firing delay (event-driven transition)
with an appropriate exponentially distributed random variable.

Suppose the tasks are invoked at time instants 0 = w, <W2 < ... < w L.
The resultant CTMC model can thus be described formally as {(S . , A,,, E),,)
u = 1, 2, --- , 11, where Su is the set of states reachable within time interval Iu

- [wu, wu+ 1), and Au : Su x Su --+ T is the event-driven transition function
between any two states in S, where T is the set of all event-driven transitions.
We use aij to denote the activity representing the transition from state si to
si in S, and use pi, to represent the transition rate (i.e., the execution rate)
of aij. Finally, Ou : Su --+ Su+l is the time-driven transition function, which
specifies for each state in Su a particular state in Su+l the system will be in
when a task is invoked at wu+,.

For example, consider the simplified task system in Fig. 2 to be used
throughout the rest of the paper. It shows a GSPN model where three pe-
riodic tasks T1, T2 and 7T3 are pre-assigned to N1 , N2 and N3, respectively.

277

T1, T7 sad Ts with periods 5, 10 and 5 are invoked twice, once and twice,

respectively, within the planning cycle I = [0, 10). T7 queries T2 for informa-

tion, whereas Ta communicates with T2 for synchronization. Suppose default

activities, labeled as a14 and all in Fig. 2, are provided only for TI related to

T2's response; no default activities are provided for synchronization between

T2 and T3. Branch conditions follow activities as and aC. To guarantee the
successful synchronization between T2 and T3, we assume these two branches

are identical.

At the beginning of 1, a token is generated in the place 01 (thus, 2, S4
and Os), 019 (0o and 033) and 027. At any time t E (0, 5), states evolve

based on event-driven transition firings only. At t = 5, when T, and T3 are

invoked again, the marking of the GSPN is determined as follows: 1) a token

is generated in 4'jo (thus, 011, ls d and0 14)and 432, 2) all tokens in 41-40 and

027-03, are removed to discard the unfinished first invocations of T7 and T3 ,

and 3) the tokens in OI9-026 are still determined by event-driven transition
firings. At t E (5, 10), the state evolution is again determined by event-

driven transition firings until t = 10, when the system repeats itself for the
next planning cycle. Let p1 = pa = P4 = P6 = AIs = 2, P2 = Ps = 4,

p7= = P/1 = /I1= 12 = 113 = P24 = 1, ps = 6, jg = 4, and branching
probabilities p = 2/3, where pi is the execution (i.e., transition) rate of

"a generic activity aj. After performing reachability analysis on the GSPN,
"a total of 90 (108) states are generated within 11 = [0, 5) (12 = [5, 10)).

Appendix A lists all the states where N2 needs to male a scheduling decision
because more than one scheduling option is available.

From the brief descriptions above, it can be seen that the CTMC model

fully describes the behavior of the system under all scheduling decisions of

the CNs, each of which may even have any number of processors. Based on

this model, it is our purpose to derive the optimal scheduling decision for each

CN such that the expected number of tasks (invocations) missing deadlines is

minimized.
In the centralized case to be addressed in the next section, we assume that

each global system state si E 5 = U,- 1 S,, is available to all CNs. To facilitate

the analysis of the decentralized TMSP in Section 4, the local -state available

to the individual CN needs to be identified first. This local state is embedded

in the global state si and can be defined by Nk's local state space S• within

IL. S* is constructed by first identifying those GSPN places associated with

Nk only and then selecting the markings of such places from each state in S,.

An element in S! thus represents the information available to Nk only. For

278

Im

example, if si denotes the global state "a14 has been completed on NI, a, has

been completed on N2 , but delay alo has not been completed", then Ni's local

state corresponding to si denotes Ua1 4 has been completed on N1
1" only. For

more details, the readers are referred to [11].

3 Optimal Centralized TMSP

By discretizing the planning cycle I into a large number of small intervals,
the TMSP becomes a problem of solving the Markov decision process (MDP)

embedded in the system CTMC model. The technique of dynamic program-
ming (DP) is to be used to solve the MDP. Although the DP is a well-known

technique, the main issues of solving the MDP with the technique lies in the

correct identification of the following characterizing elements of the MDP: de-
cision set, one-step transition probability, and one-step cost so that functional

equations can be established for an optimal solution (see, e.g., [2]). Assume
the planning cycle I has been divided into V > 1 equally spaced intervals

each of length h = LIV, and each task invocation always occurs at an epoch

defined as the left boundary of an interval.

3.1 Decision Set

The decision set DA for state si E S is the set of all scheduling options available

when the system is in si. DA is determined by combining (over all CNs) the set

of scheduling options available to each individual CN. For example, if N, has
2 scheduling options and N2 has 3 in si, then Di contains a total of 2 x 3 = 6

scheduling options. A policy 7r specifies which activities to choose for each CN
in each state si E S at each epoch v, 0 <_ v < V - 1. The policy space II is

the set of all such 7r's. For convenience, the set of activities chosen by all CNs

under lr in state si at epoch v is denoted by (l• (v).

3.2 One-Step Transition Probability

The epochs serve as the stages of the corresponding DP network [2), i.e., tran-

sitions occur only between states of adjacent epochs. Let PiF(v) denote the
one-step transition probability from state si at epoch v E I, to si at epoch

v + I under policy ir. Also, let Zi be the total transition rates of all transitions
in fl$ (v), and Ai be the set of all destination states of transitions in fl' (v),

i.e., Ai {s : A,(s,, si) E fl! (v)). Depending on whether or not a task is

invoked at epoch v + 1, Pi• (v) is determined as follows.

279

I
PI: wj+1 > (v + 1)h (epoch when no task is invoked):

Iii if siE Aiand,#i
Pj' (v) 1- 1 Zi h+ p,,h if j-- i1

0 otherwise,

because the execution time of each activity is assumed to be exponen-

tially distributed. (pij is the transition rate from si to sa.)

P2: w,++L = (v + 1)h (epoch when at least a task is invoked):

The transition probability in this case is similar to that of P1 except

that the time-driven transition function e, is fired. Specifically,

P (v)= , P.(v), siES,+1 , (2)

where Bi = {s.,: e(SE) = sj), and P' (v) is the transition probability
obtained from P1 above.

3.3 One-Step Cost

To derive the one-step cost, we need to identify the cost associated with each

state si first. To do this, the notions of goal state and its marked set are

introduced as follows. In the CTMC model, concurrent task executions can be

viewed as the movement of tokens in the corresponding GSPN. A place in the

GSPN is said to be marked if it has a token in it, implying the completion of

all activities preceding the place. In other words, a deadline in the task system

is essentially associated with the marking of a place. A place is time-critical if

a deadline is associated with it. A state si containing a non-empty set Mi of

marked time-critical places is then called a goal state with the marked set Mi.

Since a task is considered completed only after all its activities are finished, a

time-critical place is located only at the conclusion of the task containing the

place.
Let V. and 4i = f, - Mi, 1 <_ u <_ 1, denote, respectively, the set of all

those places of si that should be marked and that have not been marked at

the next task invocation time w.+,.. Since whether or not a task misses its

deadline is not known until its next invocation, it is natural to set the cost

function - the expected number of tasks missing deadlines when the system

is in si at epoch v - of the underlying MDP as:

0, E0 < V <e(,s)= h- -" h (3)Ej P,;(.)<i l ,, I fj I- 1,

280I

where P• (v) is the one-step transition probability prior to the time-driven

transition function 1, and 1i4l the number of time-critical placds of sj that

should be, but is not, marked (i.e., missing deadlines) at w.,+.

3.4 Functional Equations and Optimal Policy

Under the assumption that each CN has perfect observation of all si's, one can

construct and solve, backward recursively, the following functional equations

for an optimal policy 7r:
S Uv(s,) 0, (4)

U,,(s2) = minfc'(v, si) + Pj'j (v) U,,+i(sj)}, 0: <V < 1/, (5)

where V is the last epoch of I and U.(si) the cost-to-go [2] or the total ex-

pected number of tasks missing deadlines from epoch v to V under an optimal
scheduling folicy. Note that the minimum expected number J" of tasks miss-
ing deadlines achieved under an optimal policy 7r* is computed as J" = Uo(s,),

where s. is the unique starting state of the CTMC model of the task system.

Consider again the task system of Fig. 2. Fig. 3 shows the decisions of N2

under the optimal policy 7r*, which is derived by dividing the planning cycle

I = [0, 10) into V = 1,000 intervals each of length h = 0.01. For example,
as the system is in state 33 = (2, 4, 6, 20, 22, 27) E S1 (Appendix A) at

time t E I, = [0, 5), the optimal decision for N2 (Fig. 3(a)) is to execute

a7 if t <- 0.89, and to execute a2 (i.e., respond to T1's query) if t > 0.89.

Suppose the system is in S3 at t < 0.89, when N1 executes default activity
RI = a14, N2 executes a7 and N3 sends a message to N2. Assume further

that a14 is finished at the next epoch t + h and thus brings the system to state
96 = (6, 9, 20, 22, 27). Then, as shown in Fig. 3(a), the optimal policy for N2

is still to execute a7 . However, if the message from N3 arrives at N2 before

completing a7 or a14 (i.e., bringing the system to sit = (2, 4, 6, 20, 22, 28)),
then N2 should instead reply to N3 (i.e., execute as) immediately. The optimal

policy in any other state and at any other epoch can be obtained similarly from
Fig. 3. Also, in S4, S9, S12 and sis within I2, a5 is always executed before a7

(Fig. 3(b)). This is obvious, since at these states, the token is. in 022, rather
than in 462, meaning that T2 is stuck at ý22 waiting hopelessly for a message
that will never arrive. Hence, it is useless for N2 to execute a 7 since T2 will

not be completed in time anyway.
In Fig. 3, several anomalies on the optimal decisions occur near the last

epoch of [0, 5) and [5, 10). For example, when the system is in so at epoch

281

499, the optimal decision of N2 as shown in Fig. 3(a) is a2 rather than a7. This
is because, from our approximation of continuous time with disciete epochs,

aG is a decision just as good as ar at the last epoch of [0, 5). As V gets larger
and larger, the derived r" will become closer and closer to the true optimum.

The optimal cost for this example is J = 1.3045, which is rather high. Fur-
ther experiments show that this is because of the absence of default activities

for N2 and the tightness of task deadlines. For example, J immediately drops
to as small as 0.00056 when each task deadline is extended to 10 times of the
original deadline. Also, from Eqs. (4) and (5), the computational complexity
of the above solution method is O(V ISIJ IDI), where V is the total number of
epochs, ISJI the average number of states in a typical period I., and IDI the
average number of available scheduling decisions in each state.

4 Optimal Decentralized TMSP

Since the up-to-date global information is not generally available to each CN,
it is important to derive an optimal decentralized policy such that the expected
number of tasks missing deadlines is again minimized. Under this policy, each

CN makes its own part of the scheduling decision using information available
to the CN only. The information available to a CN consists of the current
execution stage of tasks on itself (i.e., local state) and possibly out-dated
information on the other CNs. This out-dated information is the local state
which is broadcast periodically from each of the other CNs.

Given a state broadcast frequency, system performance depends heavily
on how well each CN uses the broadcast information together with its own
local state to make scheduling decisions. This problem belongs to the class of
dynamic team decision problems [4], and is very difficult to solve except those
with one-step delay sharing (1-SDS) information pattern [1, 5, 16]. In our
decentralized TMSP, a variation of 1-SDS problems, the following dynamic
information is available to each CN at time t: its own local state at time t,
and the local states of all other CNs at time t - 1.

Ideally, the more frequently does each CN collect the other CNs' local state

information, the better scheduling decisions it will make. However, more fre-
quent state broadcasts induce higher overheads to normal inter-task communi-
cations, and thus degrade the overall system performance. We shall determine
the optimal frequency of broadcasts after the optimal decentralized policy for

each CN has been derived.

282

In the following subsections, we first compute the delays both in state broad-
casts and in normal inter-task communications due to the introduction of state
broadcasts. Then, as in the centralized TMSP, we identify the important char-
acterizing elements of the MDP such that the decentralized TMSP can again
be solved with the DP technique. Unlike its centralized counterpart however,
the elements for the decentralized TMSP include: the probability state of the

DP network, set of admissible action rules, probability state and its one-step
transition probability, one-step cost, and the functional equations.

4.1 Delays in State Broadcasts and Inter-Task Com-
munications

Using the CTMC model and the periodic state broadcasts, the (communica-
tion) subsystem can be approximated by two single-server queues in parallel:

an M/M/1 queue for inter-task communications and a D/D/I queue for state

broadcasts. Message communication delays thus depend on what portion of
the subsystem's capacity is allocated to each of these two queues.

Let A_- and b., £espectively, be the known arrival rate and average service

need (e.g., in number of bits) of inter-task messages. Let Xy and b6 be the given

number of synchronous state broadcasts per unit time and the service need

fc., each broadcast, respectively (to be elaborated further below). Then, the

portion of the subsystem's capacity allocated to serving inter-task messages
can be approximated by (, = (A.b,)/(A.b2 +A11 by) and that for state broadcasts

becomes t. = 1 - {• = (Ayby)/(Azb, + ,yby).
Recall that, in the CTMC model without state broadcasts, the delay of an

inter-task message j was represented by an exponentially distributed random

variable with rate pi. So, the average sojourn (system) time 3 of messages in

the subsystem can be approximated by 9 = I- j 1/pi, where n is the total
number of inter-task messages within I. It follows from [6) that the service
rate q,, of the original M/M/1 queue is a, = A, + 1/1. Hence, the "adjusted"

service rate a' of inter-task messages with broadcast messages considered be-
comes a' . = = (A + 1/S), and the average sojourn time 9' of the new
M/M/1 queue for the inter-task messages turns out

1 191 = I I = - 9 (6)

Notice that 0-ý t. - A9:5 _ 1; otherwise, if f. - = 0 then the total

traffic density of the M/M/1 queue will saturate the subsystem. Given 9' as

283

above, the "adjusted" transition rate pý of inter-task messages j tlken becomes

0 < G = 14=i- } (7)

as a result of introducing state broadcasts.
Since the subsystem's capacity is in fact allocated indistinguishably among

all the messages, the average service time W, (W,,) of each inter-task message
(state broadcast) at the M/M/1 (D/D/i) queue must be W, = abl/&, (WV =

ab 1 /4,), where a is a fixed constant. It follows that W,/W, = (b=/•4(4/b,)
and thus the relation A=W, = AWI,, holds. Hence, the state broadcast delay
(sojourn time or service time in this case) WV can be expressed [6) as:

W = LXW = L1 A - 1""I
if r1 ~ -~ v ;7A1~ (8)AV A w = , = TV ý.(A. + 1/1) gy

In the above derivation, while each inter-task message is treated as a single
arrival at the M/M/I queue, all the synchronous state broadcasts at a given
epoch are treated as a single arrival at the D/D/1 queue. This is not unrea-
sonable because state information is assumed to be simultaneously broadcast
at a given epoch by all CNs. Also, the inter-broadcast interval I/A. must
always be larger than W. to prevent the broadcast messages from saturating
the subsystem. Therefore, in the following discussions, we assume that each
CN broadcasts state information only after the previous broadcast has been
received by all other MNs. (This can be accomplished, for example, with the
method in [3].) In terms of the theory of stochastic control, this assumption
allows the separation of estimation from control [16], which is essential for the
applicability of the DP technique.

In what follows, we assume that each ON broadcasts its state for B times
within I = [0, L) with inter-broadcast interval g = LIB >_ WV. That is, the
first broadcast is made at t = 0, the last at t = (B - 1)g, and all messages
broadcast at t will be received at t + Wv < t + g.

4.2 Probability States of the DP Network

Since the current global state is unavailable, we need to use other information
as the "state" in our DP network. For each epoch v in I,, = [w,,, w,•+,) define a
probability state as the vector p = (Pi, P2, -", PlSS), where pi is the marginal
probability that the system is in si at epoch v, and S,, the global state space
in I.. Obviously, there are infinite number of probability states at each epoch
v. However, since (i) both [S•J and the number of available scheduling options

284

in each state are finite and (ii) W, time unit old global state isiavailable to

all CNs once every g time units, only a finite subset of probability states will
be generated. These probability states serve as the set of "nodes" in the DP

network on which the DP technique is applied for an optimal solution.

4.3 Set of Admissible Action Rules

An action rule is a rule of action for a policy at an epoch, and a policy is the
collection of action rules at all epochs. The set of action rules that N1 can use
within I. is the Cartesian product of the sets of scheduling options available
to Nk when Nk is in each of its local states within I,. For example, if the
total number of local states that N2 can be in within I, is, say, 3 and N2 has 2
scheduling options for each of these 3 states, then the total number of action
rules that N2 can possibly take within I, is 2V = 8. One of such action rules
would be: "If N2 is in the first, second and third local states, then it executes
activities a 2, a7 and as, respectively." The entire set r. of action rules for all

CNs within l' is the Cartesian product of the sets of action rules for all m

CNs.
Since some components of a probability state p in I,. may be zero, only a

subset of all action rules are admissible. To determine this set of admissible
action rules for a given p, we first identify the set of all local states of Nk

within I., each of which has a non-zero probability according to p. Second,
identify the set of action rules for each of such local states for Nk. Third,

construct the set of admissible action rules for each Nk at p. Finally, the set of
all admissible action rules ru(p) is then constructed as the Cartesian product
of the sets of admissible action rules over all CNs. Obviously, only r,(p) needs
to be considered in solving the TMSP at p.

4.4 Probability State and One-Step Transition Prob-
ability

For the centralized TMSP, the one-step transition probability is, as described
before, one essential element in its DP formulation. In the decentralized case
however, except at the epochs where broadcasts are received, it is the probabil-

ity state, rather than the probability of jumping into a state, that is essential
to the DP formulation. This is because the system always jumps from one

probability state to another (of the next epoch) with probability 1. Suppose
the system is in probability state p at epoch v E I,. The probability states

285

generated at epoch v +1 from pat v and their one-step transition probabilities

are determined depending on whether or not epoch v + 1 is a broadcast receipt

epoch.

A: v + 1 is not a message receipt epoch:

From the definition of an admissible action rule -y E r.(p), each -y determines

a unique scheduling decision for each CN and each global state s, E S. with
p , 0. Given that the system is in s, at epoch v, one can use Eq. (1) or (2)
to determine the probability Pj (v) that the system will move to si at epoch
v + 1 if -y is used. Given the marginal probability pi of si at epoch v, one
can then compute the marginal probability p. of s, at epoch v + 1 as: p. -

E l"pi Pj' (v). Therefore, the unique probability state p' 4 (p', p2, ... ,

generated at epoch v + 1 from p at epoch v is determined by:

p =pP '(v), (9)

where P'Y(v) is the one-step transition matrix whose elements are the one-step
transition probabilities Pi' (v)'s determined in Eq. (1) or (2). For notational
simplicity, we write p' = P'-(p) to denote that p' is the unique probability state

from p under y.
Since one p' is generated from p for each -y E r,(p), a set of IIr(p)l branches

of rhps is formed in the DP network at epoch v + I from p. Looking one epoch

backward, the p itself is nothing but one branch of another set generated from
a certain probability state at epoch v - 1, and so on (Fig. 4). Given a generic
p at epoch v between two consecutive state receipt epochs, this relationship
continues to hold through a particular probability state, written as X(p), at the
epoch. when states were broadcast, and finally rooted at a unique probability

state at an epoch when the last state broadcasts were received. It is important
to point out that each element of X(p) represents the prior probability of
a global state at the state broadcast epoch, and the particular global state
realized at that epoch cannot be known until W1, time units later. X(p) plays

an important role in determining the one-step transition probability as will be
described in the following case.

B: v + 1 is a message receipt epoch:

Since W. time units old global state information is now available to each ON
at epoch v + 1, the probability state at epoch v + 1 is not generated from
p at epoch v by Eq. (9). Rather, from the idea of the 1-SDS information

286

pattern, a total of IS,, Iri, probability states can be generated directly at
each of such epochs in I., where r. is the set of all action rules in I, and
s = Wy/h > 1. Specifically, each of these probability states corresponds to:
(i) the actual global state the system was in W1, time units ago, and (ii) the
specific sequence of action rules adopted from the state broadcast epoch to

epoch v + 1. In other words, each of these probability states can be identified
as an (s-+ 1)-tuple (si, y'(0), 7'(I), -'-, -Y(a -1)), where 3i is the actual global

state the system was in W, time units ago, and 7'(e), e 0, 1,..., s - 1,

represents the action rule taken at the e-th epoch since the last state broadcast.

Similarly, one may correspond each probability state p at epoch v, when the

state broadcasts are not available yet, to an s-tuple (X(p), -y(O), -J(1), -. *, 7(3-
2)), where X(p) is the root of p at the state broadcast epoch, and Y(e) the ac-
tion rule taken at the e-th epoch since the state broadcast. Notice that while
-y(e)'s represent the action rules which "brought" the system to probability

state p at epoch v, -y'(e)'s are those brought the system to p' at epoch v + 1.
In what follows, the one-step transition probability from p to p' is determined,
depending on whether or not -(e) =-y'(e), V e = 0, 1, 2, .-- , s - 2.

Given p and p' at epochs v and v + I, respectively, denote as Y(s - I) the

action rule adopted at epoch v. Then, the one-step transition probability from
p to p' can be determined easily as:

.QY(S-l) f q, if -(e) = -y'(e), Ve = 0, 1, 1 S - 1, (10)
"•PP = 0 otherwise,

where qj is the i-th component of X(p) representing the marginal probability
of the system being in si, which is the first component in the (s + 1)-tuple

representation of p'.

4.5 One-Step Cost

The one-step cost dc(v, p) at epoch v for probability state p under action rule
7 can be easily determined using the one-step cost c(v, a,) obtained from Eq.
(3) for the centralized TMSP. Specifically, we have

ISIS
CP(v, P) = Epc t (v, a,), (11)

i=1

where •r is the centralized policy corresponding to the decentralized action rule
7 when the system is in sa, and pi the i-th component of p.

287

4.6 Functional Equations and Optimal Policy

Unlike the centralized case for which only one pass is needed, three passes

are required to derive the optimal decentralized policy. The first pass is to
generate all the probability states of the DP network. The second pass solves

the functional equations, backward recursively, to find the optimal action rule

at each probability state p and each epoch v. Since p is not observable, a
third pass is needed to identify the optimal action rule for each epoch. In

what follows, the last two passes are described; the first pass has already been

presented in Section 4.4.

A. Functional Equations (the second pass)

Similarly to the centralized case, the functional equations U,(p) is the cost-

to-go representing the number of task missing deadlines as the system is in p
at epoch v. U1,(p) can be determined easily by using backward recursion as

follows.

Uv p) = 0. (12)

If v + 1 is not a message receipt epoch, then

U,,(p) = min (d(v, p) + U,+ 1(p')). (13)
'vEF.(P)

On the other hand, if v + 1 is a message receipt epoch then

U,,(p) = min CP(1-1)(v, p) + _,'P'(,'-I)'r ^"} (14)-Y(s-i)er,(o) I' ,pf , v,+ k

where Q"*-') is the one-step transition probability from p to p' derived in

Eq. (10). Notice that the minimum expected number, J, of tasks missing

deadlines, which is achieved under the optimal decentralized policy -f, is equal
to Uo(po), where p0 is the probability state representation of the unique starting

state s. of the task system.

B. Optimal Policy (the third pass)

Let ýj,(p) be the optimal action rule for p at epoch v derived in the second

pass above. Then, the optimal decentralized action rule -/y we are interested
in can be identified as the Q•(p) of one particular p to be explained below.

Notice that the probability state p at epoch v is not observable (and thus

not appears as part of the notation of -fo) and is uniquely determined by

the action rule used and, for broadcast receipt epochs, the out-dated state
288

broadcast information as well. This means that the nodes (probability states)
of the DP network visited by the optimal action rule -, form a path of V
nodes each at a separate epoch from 0 to V - 1. Therefore, the optimal action
rule -y,, at epoch v can be identified following the nodes p• to be visited on the
path as follows. We consider each of the three intervals: (1) from epoch 0 to
the first message receipt epoch rT, (2) from the i-th to the (i + 1)-th message
receipt epoch, 1 < i < B - 1, and (3) from the B-th (last) message receipt
epoch rB to the end of the planning cycle. Consider first the interval between
epoch 0 and rT. Obviously, p; can be initialized as

p; = Po. (15)

Then, forward recursively,

S-t. (p) 0 _< v< r,,(16)

and
p =, P'I(p,), 0 V v < rT, (17)

where P'(p) denote the unique probability state from p under -/ as described
in Eq. (9).

Next, consider the interval from ri to ri+l, 1 < i < B - 1. Froii the
results of the second pass and using the global state contained in the received
broadcasts, a unique probability state p,i at epoch ri is determined. Similar
to Eqs. (15)-(17), we have

p7. = pN,, (18)

=i - (p), r, V v < ri+,, (19)

and

p - P"(p:), r, :_ v < ri+,, (20)

At epoch ri+i, when state broadcasts are received again and used, a unique
pr 'bability state p 1+, can be identified by using the results of the second pass
as well as the information contained in the broadcasts received. This process
repeats itself for all such intervals between epochs ri and rT+i until the final
message receipt epoch rB.

Finally, within the interval from epochs rB to the last epoch V, one can
derive:

Pr9 = Prp, (21)

= /v(P), rB :5.V < V, (22)

289

p:+, = P'(p.), r, _ V < V. (23)

Obviously, -y = [yf, 'Y;, "", -1, "", -y,-i] is the optimal policy derived for

the decentralized TMSP with periodic state broadcasts.
In summary, three passes are needed to solve the decentralized TMSP:

P1. Generate the DP network (forward recursively) as described in Sections
4.2-4.4.

P2. Solve the functional equations, Eqs. (12)-(14), backward recursively using
the one-step cost derived in Eq. (11) for the DP network generated.

P3. Identify the optimal decentralized scheduling rules forward recursively
from the solutions obtained in P2 using Eqs. (15)-(23).

As an example, consider again the task system in Fig. 2. Within I
[0, 10), suppose inter-task messages a,, a3, a4, as, a12 and a1 3 each occurs only

once, while a1o and all each occurs twice, resulting in a total of 10 messages.
Recall that Pi = /s = P 4 = /i = 2 and /A10 = p/I = P12 = P13 = 1. The
average sojourn time . of these inter-task messages within the communication
subsystem is .9 = Si -L = 4/5. Since A. = 10 /L = 1, the service

rate of the M/M/1 queue p. = A, + 1/S = 9/4. Let the arrival rate
of state broadcasts A. = 2 and the service need b. = 0.2 b,, where b. is
the service need for each inter-task messtage. Then, the portion of capacity
allocated to the inter-task messages is G = b./(b. + 0.4b,) = 5/7 and
the adjusted service rate y4 = =p_ = (5/7)(9/4) = 45/28. From Eq. (6),

1/(p'- A) = 28/17 > 4/5 - •, and s/S'= 17/35. From Eq. (8),
the delay in broadcasting states becomes W,, = A.ZWS/A = (1/2)(28/45)
14/45 since W, = -1/p = 28/45. Notice that the inter-broadcast interval
(0.5) is larger than W. satisfying the requirement that states are broadcast
only after the previously broadcast states have been received. Also, to avoid
saturating the communication subsystem, the maximum of A. with b. = 0.2 bs
occurs only when o' = 0o, i.e., p' - = - or = - ,= (Eqs. (6)

and (7)). This occurs at \, = 25/4 when t. = 4/9, where W., = W, = oo.
To ease the computational difficulty imposed by the DP algorithm, the fol-

lowing approximations are made: (i) the planning cycle is discretized into 200
intervals, (ii) W. is discretized into only two stages, each of which contains
several intervals, and (iii) the marginal probability of each state is discretized
into 10 different intervals. Applying this approximation to the decentralized

290

TMSP with b. = 0.2 b. and A, = 0.4, 0.8, 1.0, 2.0, 3.0 and 4.0, we obtained

S= 2.309, 1.577, 1.445, 1.446, 1.489 and 1.543, respectively, showing that

AV = 1 is the best among the five broadcast frequencies. To show the fact

that the optimal frequency depends on b., the same algorithm is applied again

to the cases with b. = 0.5 b, and A, = 0.2, 0.4, 0.8, 1.0 and 2.0. The best

broadcast frequency again turned out to be Ay = 1.0, but with the corre-

sponding J = 1.544 > 1.445. However, as shown in Fig. 5, the true optimal

broadcast frequency of the former should be greater than that of the latter

case. These results are not surprising since the communication subsystem

now needs to allocate more capacity to deliver the same state information,

and thus, degrades the normal inter-task communications.

4.7 Computational Cost of the Solution Algorithm

Similar to any DP-based algorithm, the computational complexity of the pro-

posed solution algorithm comes mainly from the total number of probability

states in the underlying DP network. Let IPI be the number of intervals into

which the probability spectrum [0, 1] is discretized and remember that IS.1
is the average number of global system states in each interval I,. Then, the

total number of probability states generated will be A = VIP[IISI, where V

is the number of epochs in a planning cycle. Remember that the average

number of action rules available to each system state is IDI, the computa-

tional complexities of the first (generating the DP network) and the second

(solving the functional equations) passes are both O(AIDI) = O(VIPjIs'5 IDI),
whereas that of the third pass (searching for the optimal policy) is O(V). This

makes the computational complexity of the overall algorithm O(VIPIISUIIDI).

It is not surprising that because of the difficulty of the decentralized TMSP,

the resulting solution is not a polynomial algorithm. (In fact, all DP-based

algorithms have exponential complexity.) Notice that the computational com-

plexity of our solution to the centralized TMSP is O(VIS.1IDI) as pointed out

before, which is much simpler than that of its decentralized counterpart.

5 Conclusions

Scheduling combined tasks and messages is important in distributed real-time

systems since time-critical tasks must be completed before their deadlines to

prevent possibly catastrophic consequences. In this paper, we have presented

both centralized and decentralized algorithms for the problem of optimally

291

scheduling periodic tasks and their inter-task communication messages to min-

imize the number of tasks missing deadlines.
Concurrent execution of tasks and inter-task messages communications are

first modeled as a sequence of continuous-time Markov chains based on which
the DP technique is applied to derive optimal scheduling policies. For the
centralized case, the optimal policy is computed by assuming the up-to-date
global system state is available to each computing node (CN). For the decen-
tralized case, however, we assume that aul CNs periodically broadcast their
local states so that other CNs can make better scheduling decisions. The opti-
mal decentralized scheduling policy and its optimal state broadcast frequency
are derived by using the separation principle, i.e., separating state-estimation

from decision-making.
Both optimal centralized and decentralized policies are derived off-line, and

the results can be looked up when the system is in operation. Thus, the
computation complexities with deriving such policies can be tolerated if the
problem size is not too large. However, if the number of global states and the
size of the policy space are large, then a simple but good approximation to
this technique is important. This is a matter of our future inquiry.

References

11] M. Aicardi, F. Davoli, and R. Minciardi, "Decentralized Optimal Control
of Markov Chains with a Common Past Information Set," IEEE Trans. on
Automat. Contr., Vol. AC-32, No. 11, November 1987, pp. 1028-1031.

[2] E. Denardo, "Dynamic Programming: Models and Applications," Prentice-
Hall, Englewood Cliffs, New Jersey, 1982.

[3] A. Griefer and R. Strong, "DCF: Distributed Communication With Fault
Tolerance," Proc. 7th Annual ACM Symp. on Principles of Distributed

Computing, Aug. 1988, pp. 18-27.

[4] Y. C. Ho and K. C. Chu, "Team Decision Theory and Information Struc-
tures in Optimal Control Problems - Part 1," IEEE Trans. on Automatic
Control, Vol. AC-17, no. 1, Feb. 1972, pp. 15-22.

[51 K. Hsu and S. Marcus, "Decentralized Control of Finite State Markov
Processes," IEEE Trans. on Automatic Control, Vol. AC-27, no. 2, April
1982, pp. 426-431.

292

I
I
I [6] L. Kleinrock, Queueing Systems, Volume I: Theory, Wiley & Sons, 1975.

[7] C. L. Liu and J. W. Layland, "Scheduling Algorithms for Multiprogram-
ming in a Hard Real-Time Environment," J. of ACM, Vol 20, No. 1, 1973,
pp. 46-61.

[8] J. P. Lehoczky, "Fixed Priority Scheduling of Periodic Task Sets with Ar-
bitrary Deadlines," Proc. of IEEE Real-Time Systems Symposium, 1990,
pp. 201-209.

[9] Jane W. S. Liu et al., "Algorithms for Scheduling Imprecise Computa-

tions," IEEE Computer, May 1991, pp. 58-68.

[10] M. A. Marsan, G. Balbo and G. Conte, "A Class of Generalized Stochastic
Petri Nets for the Performance Analysis of Multiprocessor Systems," A CM

Trans. on Computing Systems, Vol. 2, No. 2, May 1984, pp. 93-122.

[11] D. T. Peng, and K. G. Shin, "Modeling of Concurrent Task Execution in

a Distributed Real-Time Computer Systems," IEEE Trans. on Computers,
Vol. C-36, No. 4, Apr. 1987, pp. 500-516.

[12] M. Pinedo and L. Schrage, "Stochastic Shop Scheduling: A Survey," in
Deterministic and Stochastic Scheduling, Dempster, et al. (eds), Reidel,
Dordrecht, The Netherlands, 1981, pp. 181-196.

[13] S. M. Ross, Applied Probability Models with Optimization Applications,
Holden-Day, 1970.

[14] K. G. Shin and M. E. Epstein, "Intertask Communications in an Inte-
grattud Multi-Robot System," IEEE J. of Robotics and Automation, Vol.
RA-3, no. 2, Apr. 1987, pp. 90-100.

[15] Andre M. van 'liiborg and G. M. Koob (eds), Foundations of Real-Time

Computing: Scheduling and Resource Management, Kluwer Academic Pub-
lishers, 1991.

[16] H. S. Witsenhausen, "Separation of Estimation and Control for Discrete
Time Systems," Proc. of the IEEE, Vol. 59, No. 11, 1971, pp. 1557-1566.

2

i 293

RECEENIRCEVEREL

RProesponing sid uiigSd

ge:G N ol ot

R.PLY4

medum

Receiving Side Sending Side

(al. SEND-RECEIVE-REPLY

I ~~Control ---

Responding Side Querying Side

(b). QUERY-RESPONSE

Figure 1: GSPN Model of Default Activity

294

T1 T2 T3

4 7 l.p=21/3 2l-pPl30

II

eY~d 31 end

I?

I-

I
i

1 33

II
IN 1 N2 N3

I FIgure 2: A Simple Task System

1 295

4.5 - -4.5

4.0- -4.0

3.0-- --. 0

LO.O--

state#s 3 5 6 8 11 17 23 24 25 26 32 33 34 35 41 47 5056 59

Legend: : a2 -':a 7 :a
(a). Ii=10, S)

10.0- -10.0

9.5-'-- -- 9.597

9.0 - -- .0

Legend- --8.5 JIa

7.5- .5

7.0--0

6.5- 5

5.5--.

state #s 4 9 12 18 400 4S 4 46 49 S3 56 59 60 63 70 71 74 76 $S 87 88

Legend: • :a 5 a-- : 7 :a 9

(b). 12 = 15, 10)

Figure3: Optimal Scheduling Policy for N2

296

II

I _ b • LWl -I. ,,,III

* I(* -I n

I40j

0, /I)

P- t'Qr.,p). VM). X1 -. *0-2
:AP.t. q& "" 0)* 0

state broadcast state ro s bo1a dc as
stawe receipt StU mceipt

Figure 4: Probability State and One-Step Transition Probability

I

,is - by - 0.5 bx

3B -
by - 0.2 bi

imi

II

Centralized
Policy

I ' I I ,I Iy

1.6 0.4 0.6 08 1 2 3 4

1 Figure 5: J's for by = 0.2 b. and by = 0.5 b.

I 297

APPENDIX A

SYSTEM STATES OF FIGURE 2

A st si is rtpz ucnedasi =UI plP= a j ha a uAto).

(a). I, = [0, 5) (b). 12 = [5, 10)

3 = 2 4 6 20 22 27 4 = 11 13 15 20 22 32
5 = 2 4 5 20 22 28 9 15 18 20 22 32
6 = 6 9 20 22 27 12 11 13 15 20 22 33
8 = 5 9 20 22 28 18 15 18 20 22 33

11 = 2 4 6 20 22 28 40 = 11 13 15 20 24 32
17 = 6 9 20 22 28 41 = 11 13 14 20 24 33
23 = 2 4 7 20 22 28 45 = 15 18 20 24 32
24 = 2 4 6 21 22 28 46 = 14 18 20 24 33
25 = 2 4 6 20 22 29 48 = 11 13 15 20 24 33
26 = 2 4 6 20 24 29 53 = 11 13 15 21 24 33
32 = 7 9 20 22 28 56 = 15 18 20 24 33
33 = 6 9 21 22 28 59 = 11 13 16 20 24 33
34 = 6 9 20 22 29 60 = 11 13 15 20 25 34
35 = 6 9 20 24 29 63 = 15 18 21 24 33
41 = 2 9 20 22 28 70 = 16 18 20 24 33
47 = 2 4 6 20 24 31 71 = 15 18 20 25 34
50 = 8 9 20 22 28 74 = 11 18 20 24 33
56 = 6 9 20 24 31 76 = 11 13 15 20 25 35
59 = 3 9 20 22 28 85 = 17 18-20 24 33

87 = 15 18 20 25 35
88 = 12 18 20 24 33

298

I
I
I
I
I
I
I

I
I
I
I
1 299

Comparing Formal Approaches for Specifying and Verifying
Real-Time Systems

C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw"

I Introduction

Engineering embedded systems, such as the mission-critical computer (MCO) systems developed
for the Navy, has become difficult due to the complexities of stringent requirements for hard-real-
time performance, dependability, security, etc. Of particular importance is the development of
unambiguous, complete, and consistent requirements specifications for such systems. Experience
has shown that system errors found late in the development process often are the result of poorly
understood requirements specifications [19]. Furthermore, such system errors are best detected as
early as possible to avoid much more expensive modifications later in development [3].

One approach to this problem is the use of formal methods in specifying requirements and in ver-
ifying critical properties of those requirements. Formal methods, based upon precise mathematical
theories and models, have the potential for improving the correctness of requirements specifications,
especially those for the most critical aspects of the system such as security and real-time perfor-
mance. It has been suggested (see, e.g., [20]) that these formal methods need to be tested on actual
real-time systems. Such testing will allow the scalability of the methods to be assessed and will also
uncover new problems requiring formal solution. A recent survey reports that formal methods have
been used successfully in the development of actual systems, but that much needs to be done in
such areas as integrating formal methods with informal methods in the development process and in
introducing better formal models for hard real-time requirements [10].

The goal of our research is to understand better the hard real-time aspects of requirements. Re-
cently, a large number of formal methods have been invented for specifying and verifying real-time
systems. However, a greater understanding is needed of how they compare--e.g., what classes of
problems they can solve, the availability and quality of mechanical support, etc. To provide ins'ght
into the utility of different methods for solving real-time problems, we have developed a generic ver-
sion of a real-time railroad crossing system. We are using this example as a benchmark for comparing
different formal approaches for specifying real-time systems and for analyzing their properties. In
this paper, we provide a formal statement of the problem; describe three formal approaches that
can be applied, namely, process algebra, model checking, and general-purpose theorem provers; and
summarize efforts currently in progress to use each approach to specify the system of interest and
prove properties about its behavior. In Sections 4 and 5, we describe initial results obtained with
an approach based on the process algebra CSP and an approach using the general-purpose theorem
proving system PVS, respectively.

2 Generic Railroad Crossing (GRC) Problem

2.1 Background

The original example, developed by Leveson to illustrate her software safety techniques [18] and
extended to a real-time version to illustrate Mlodechart [16], involves a system operating a gate

"C. Heitmeyer, R. Jedords, and B. Labaw are with the Naval Rewsch Laboratory, Washington, DC 20375. The
work reported here is supported in part by ONT grant N6092193WRW0066.

300

2 Generic Railroad Crossing (GRC) Problem

2.1 Background

The original example, developed by Leveson to illustrate her software safety techniques 118] and
extended to a real-time version to illustrate Modechart [16], involves a system operating a gate
at a railroad crossing. The system must ensure that the system cannot enter an unsafe state. In
particular, it must satisfy a safety propertip i.e., whenever a train is in the crossing, the crossing
gate must be down.

To make the problem somewhat more realistic, we have generalized it. While the previous
versions describe a system with a single track and at most two trains in the region of interest both
traveling in th. same direction, our version allows several tracks and an unspecified number of trains
traveling in both directions. In addition to the safety property, our version includes a utility property
to ensure that automobiles have fair access to the crossing. The purpose of the utility property is to
make sure the system performs its function and to avoid degenerate solutions, e.g., a solution that
lowers the gate and keeps it lowered. Safety-critical systems must not only operate safely. To be
useful, they must also perform certain functions within specified time intervals. We note that the
utility property requires bounded liveness, which turns out to be a safety property.

2.2 GRC Problem Statement

The system to be developed operates a gate at a railroad crossing. The railroad crowing I lies in
a region of interest R, i.e., I c R. A set of trains travel through R on multiple tracks in both
directions. A sensor system determines when each train enters and exits region R. To describe the
system formally, we define a gate function g(t) 6 [0, 90], where g(t) = 0* means the gate is down
and g(t) = 90* means the gate is up. We also define a set ({X) of occupancy intervals, where each
occupancy interval is a time interval during which one or more trains are in I. The ith occupancy
interval is represented as Ai = [fr, Y'], where T, is the time of the ith entry of a train into the crossing
when no other train is in the crossing and Y, is the first time since ri that no train is in the crossing.
Figure I shows two examples of occupancy intervals.
Given two constants ti and 6, 6: > 0, f2 > 0, the problem is to develop a system to operate the
crossing gate that satisfies the following two properties:

Safety Property: t E ui,.i 0 g(t) = 0 The gate is down

in all occupancy
intervals

Utility Property: t 9 U4[Ti - fl, Vi + 2] =* g(t) = 90 The gate is up as
often as possible

Figures 2a and 2b illustrate the Safety and Utility Properties.

3 Formal Approaches
Several formalisms are available to specify the system described above and to reason about its
properties. These formalisms fall into three classes:

"* General-Purpose Theorem Provers -(e.g., Boyer-Moore [4], EVES [9] [17], EHDM [23],

PVS [21] [22] [26] [27], HOL [13)),

"* Model Checkers (e.g., Clarke's CTL [5], the Hodechart verifier [28]), and

"* Process Algebras (e.g., CSR [12], Cleaveland's Concurrency Work.bench [7], and CSP [11]).

We note that verification tools based on the two latter approaches, model checking and process
algebras, are highly specialized and provide verification with little human intervention. In contrast,

301

a proof generated with a mechanical theorem prover usually requires considerable human guidance.

Efforts are currently in progress to apply one or more examples of each approach to the GRC
problem. To develop insight into the styles of specification and verification that are most natural
and effective for a given approach, these efforts are, to the extent feasible, proceeding independently.

Our initial evaluation focused on the FDR (Failures Divergence Refinement) tool [II] for automat-
ically checking CSP specifications. Bill Roscoe of Oxford developed the original CSP specifications
of the GRC problem which NRL has modified and extended. The analysis in Section 4 is based on
the FDR version developed by NRL.

A second evaluation was based on a solution developed using the theorem-proving system PVS by
Natarajan Shankar of SRI International [25]. That solution used a real-time model based upon Unity
[6] with real-time constraints expressed using a past time operator Since. At NRL we experimented
with the same basic model, but used a complementary Till operator that expressed future time. The
analysis in Section 5 covers both of these efforts.

We evaluated the suitability of the CSP and PVS solutions using criteria defined in reference
[8]. These criteria include conciseness, expressibility, ease of use, and scalability. In evaluating
expressibility, we compared the ease of expressing both the system specifications and the properties
of interest.

4 CSP Solution

4.1 Overview

Verification in FDR means checking that one CSP process refines another CSP process. In the GRC
example, it must be shown that the CSP process that models the system behavior (which we treat
as the specification) refines a more abstract CSP process that cnaLodes a system property, such as
the Safety Property or the Utility Property.

The current version of FDR does not have an intrinsic modei of time. To model time, we
interleave clock-pulse events among the other system events. For this model of time, it is essential
to verify the following two properties before addressing the Safety and Utility Properties:

1. No-Deadlocks Property. The specification is deadlock-free.

2. Non-Zeno Property. The specification does not exhibit Zeno behavior: between any two
clock-pulses, there is never an infinite number of other events.

In our verification, we defined the conjunction of properties 1 and 2 as a single property, called the
TimeOK Property.

4.2 Evaluation

Conciseness

FDR supports only restricted parameterization of CSP processes and numeric expressions. Param-
eterization of high level processes formed by parallel composition of other processes is not allowed.
Similarly numeric functions with arguments are not allowed in parameterized expressions.

In our experiments we found both these limitations too restrictive, and used the UNIX m4 macro
tool as a preprocessor to generate CSP specifications. Full parameterization of the processes and
identifiers would have been more convenient if included directly in FDR.

Expressibility for the System Specification

CSP/FDR is particularly effective for modeling the control flow in concurrent finite state systems
that communicate via mutual synchronization. It is also convenient for specifying nondeterminism.
However, the following limitations of (untimed) CSP and the FDR tool hamper expressibility:

302

* Because timing is an add-on feature, modeling delays and deadlines is awkward.

* The omission of strong typing in CSP/FDR means that some common errors, such as undefined
constants, go undetected.

* No graphical representations of CSP processes are available. Some users may prefer graphical
representation to aid in comprehension of CSP processes.

An intrinsic weakness of this approach, shared with many model checkers, is that a concrete finite
model of the specifications is required. (This can also be viewed as an advantage, since concrete
models permit decision procedures that lead to completely automatic verification.) This manifests
itself in a number of ways:

* Modeling data retained in the state of a process is weak-it is addressed only to a limited

extent by channels and parameterized processes.

* Modeling is limited to finite state systems.

* General specifications of relationships between arbitrary variables cannot be nandled.

Ease of Use

The basic use of FDR to check traces refinement is not difficult to learn. Traces refinement, a familiar
approach used in other systems, e.g., the Constrained Expression Toolset [2], is closely related to
regular language recognition. The verification process is straightforward and completely automatic.

That the FDR tool is a prototype is evident. The tool operates on textual specifications in a
largely batch-oriented style (e.g., a large chunk of specification is parsed at one time; error reporting
is minimal and often cryptic). Moreover, there is little tool support for creating specifications.
Although an excellent user manual and tutorial [11] are available, detailed instructions for using the
tool are generally lacking.

Scalability

Our more ambitious experiments with FDR quickly led to unacceptable response times. The major
underlying cause was exponential increase in the size of the CSP processes as system parameters
grew larger. The basic limitation to concrete models and the associated exhaustive search strategy
inherent in refinement checking is the essential cause of this exponential increase.

The compositionality of CSP refinement provides an approach to scalability problems. If the
most abstract version of a system refines (satisfies) a property, and its components are refined (in
the dual sense that we refine them to a more concrete form and the refinement relation holds)
independently, then the most concrete version also satisfies the property.

This form of composition is straightforward if we are working from an abstract form to increasing
levels of detail. Our case was more difficult since we were working backward and wished to find a
more abstract form. The natural candidate for the more abstract form in GRC was a specification
that collapsed the multitude of trains into a single Abstract Train. With this approach we were
able to reduce the time to verify the TimeOK property from 18 minutes elapsed time to 2 minutes
elapsed time.

Expressibility and Validation of Properties

Validating that the formal expression of the properties in FDR is equivalent to those of the GRC
problem statement is difficult, even though both forms are formal. The major difficulty is that
the language for expressing the properties that FDR requires is the same CSP language used to
express the specifications rather than a more abstract, declarative language such as the CSP traces
language. Use of this language makes it awkward to express properties that refer to state: e.g., the
Safety property can be paraphrased as "In-State-Crossing implies In-State-Down."

303

The ease of validation was improved by developing two separate independent versions of both
the Safety Property and the Utility Property. Our attempt to prove the equivalence of the different
versions led us to discover some errors. The final result was two sets of CSP specifications of these
two properties. By way of example, two versions of the Utility Property were formulated, one
deterministic, the other nondeterministic and easier to understand due to separation of concerns.

5 PVS Solution

5.1 Overview

Specification and verification using a general-purpose theorem prover such as PVS requires both
the encoding of a real-time specification/verification method (RSVM) as well as the specification
and verification of the system in question. Optionally, one also has complete freedom to modify or
create anew some RSVM. Both the RSVM and system specification must be encoded as axioms,
definitions, proof strategies, etc. in the logic language supported by the theorem prover.

The RSVM developed by Shankar and encoded in PVS [25] consists of a state-transition model
similar to Unity [6] with a non-decreasing real-valued time associated with each new system state.
Timing constraints are added via a Since operator, which provides the time since a condition defined
on the state variables was last true with respect to the current system state. This single operator is
sufficient to express both deadline and delay constraints upon a system. This method also separates
the concurrent behavior of the system from the timing behavior.

A complementary Till operator, which indicates the nearest future state when a condition be-
comes true, was developed in our experiments at NRL. The Till operator was added to express
timing constraints in a more natural way than could be expressed by exclusive use of the Since
operator.

Conciseness

The language of PVS is Higher-Order Logic (HOL). In general, HOL provides a concise notation for
expressing system specifications as well as the encoding of the RSVM. In many situations HOL allows
more concise specification of constructs than First Order Logic (FOL) since it allows parameters to
be functions-this is not allowed in FOL.

Expressibility for the System Specification

On the other hand the use of HOL as a general-purpose specification language may not adequately
address concerns about domain-specific special notations to include graphics. The notations and
concepts of HOL such as quantifiers, lambda expressions, etc. are not likely part of the vocabulary
of the practicing engineer. It would be useful to have a front-end tool, fully integrable with PVS,
for experimenting with such domain-specific notations. PVS does anticipate part of this need by
providing LaTeX output, but this is limited to formatting standard mathematical notations.

Appropriate encoding of the RSVM into a general-purpose theorem prover can support the de-
velopment of quite general models. The model of the GRC in PVS allows an arbitrary (even infinite)
number of trains. Furthermore it supports timing parameters as variables and relationships among
them rather than specific values; e.g., to ensure safety of the system, the sum of deadlines on moving
the gate down and any signaling or computation overhead must be less than the minimal time it
requires some train to reach the crossing after entering the region R. General specifications pro-
mote ease of change, reuse, and better understanding of boundary conditions (e.g., the relationship
between gate and train crossing time mentioned previously).

In the development of an RSVM, particular care must be taken that there is a balance between
expressibility concerns and others such as verification ease. In the case of FDR, the ease of verification
via an automatic decision procedure was the overriding decision in limiting CSP processes to finite
concrete models. For the RSVM developed by Shankar, there may have been too much emphasis
upon ease of verification via the exclusive use of the Since operator for timing constraints. The timing

304

specifications using the Since operator are less understandable than the delay/deadline paradigm of
Modechart [16] since the former looks backward in time while the latter looks forward.

To investigate if the delay/deadline paradigm could naturally be encoded in a PVS specification
(as well as to gain experience with PVS by actual proving new theorems rather than simply examining
proofs) we added the Till operator to the RSVM. We showed that it is feasible to use the Till operator
to make specification of timing more natural without excessive complication in verification for the
Safety property.

Ease of Use

The current user interface to PVS is provided by emacs. This type of interface, although better
than a simple "dumb terminal" interface as in the case of FDR, seems somewhat dated in this age
of bit-mapped graphics. The user documentation assumes familiarity with emacs. For the emacs
novice it would be preferable to include the minimal subset of emacs required for running PVS as
part of the documentation (the standard emacs online tutorial is insufficient).

More importantly, the use of a general-purpose theorem prover requires both general theorem
proving skills (i.e., the mathematical maturity and expertise to develop manual informal proofs) as
well as expertise in the use of the tool since there is considerable interaction between PVS and the
user. Furthermore the level of effort required to formally prove a theorem with assistance from PVS
is at least an order of magnitude greater than that required to do an informal proof. For critical
applications, this effort may be worthwhile. Errors may be detected that might not otherwise be
found in the "social process" of peer review of informal manual proofs. Moreover, formal proofs may
lead to better understanding of all assumptions required for a complete proof [24].

Thus general-purpose theorem provers such as PVS appear to be more appropriate for experi-
mental use in developing verification paradigms (such as RSVM's) in special domains rather than
for production use by a practicing engineer.

That PVS implements a strongly-typed version of HOL is quite useful even if full proofs are not
attempted. The preliminary type-checking phase of PVS can eliminate common specification errors
related to type incompatibility.

Scalability

In many ways, general models scale up better than concrete models. For example, repetitive similar
constructs (such as the individual trains of the GRC) are not much more difficult to specify or verify
than a single construct in PVS. By comparison, extending the number of trains in the concrete
model of FDR results in exponential explosion.

On the other hand, the difficulty of informal theorem proving in general, as exacerbated by the
level of detail required for formal, machine-assisted proof, makes scaling up very difficult. Two
approaches to simplifying proofs may be of benefit:

* Development of theory of composition of proofs that allows proofs to be developed for compo-
nents, and the components combined without having to reprove results for the overall system.
The compositionality of FDR is an example of this approach. A general approach to compo-
sition is given in [1]. SRI is currently investigating composition for PVS.

e Development of powerful lemmas and proof strategies that hide much of the detail of formal
proofs. Well-known decision procedures, such as those for Presburger arithmetic and numerical
inequalities, are provided in PVS. This eliminates much of the drudgery associated with low
-evel details of formal proofs. Additional proof strategies for the RSVM need to be investigated
(our experimentation at NRL did not address this aspect).

Expressibility and Validation of Properties

HOL is sufficiently expressive to provide high level expression of the properties (Safety and Utility) in
a form that may easily be validated with the formal statement in the GRC. The validation approach

305

used for FDRI could also be applied: two or more statements of a property could be specified and
then proved to be equivalent, although this was not part of our experiments.

6 Summary

Our initial experiments with CSP/FDR and PVS have given us considerable insight into the utility
of the process algebra and general purpose theorem prover approaches for specifying and verifying
real-time properties. Analyzing the different solutions to the GRC problem should help identify the
strengths of each approach and how each approach can be used productively to develop industrial-
strength real-time systems.

3I

i .. v I 2v2 t

0 1 2I

�1i -- 0 k2 2

Figure 1. Two examples of occupancy intervals

Safety Property: t e ui =: g(t)=O
occupancy

g(t) gate position interval

900-

t__0 j Vj T2 V2 'C3 V 3
Figure 2a. Safety Property specifies relation of gate position to occupancy Intervals

Utility Property: t 0 u, [Ti-tj,vi-:] =• g(t)=90

g(t) gate must be up

£0 position iv,

Figure 2b. Utility property specifies relation of gate position to occupancy Intervals
and constants 4, and ,2

306

References

[1] M. Abadi and L. Lamport, "Composing Speciflcations, ACM Trasi. Prol. Lang. and Sys.,
Vol. 15, No. 1, Jan. 1993, pp. 73-132.

[2] G. S. Avrunin, U. A. Buy, J. C. Corbett, and L. K. Dillon, "Automated Analysis of Concurrent
Systems with the Constrained Expression Toolset," IEEE Trans. Softw. En,., Vol. SE-12, No.
11, Nov. 1991, pp. 1204-1222.

[3] B. Boehm, Software Engineering Economics, Prentice-Hall, Englewood CliBS, NJ, 1981.

[4] R.. S. Boyer and J. S. Moore, A Computational Logic Handbook, Boston, MA, 1988.

15] E. M. Clarke, E. Emerson, A. Sistla, "Automatic Verification of Finite State Concurrent Systems
Using Temporal Logic Specifications," ACM Tas. Prog. Long. and Spa., Vol. 8, No. 2, Apr.
1986.

[6] K. M. Chandy and J. Misra, Parallel Program Design: A Foundation, Addison-Wesley, Reading,
MA, 1988.

R7] B. Cleaveland, J. Parrow, and B. Steffen, "The Concurrency Workbench: A Semantics-Based
Tool for the Verification of Concurrent Systems,* ACM 7Tans. Pro#. Lang. and Sys., Vol. 15,
No. 1, Jan. 1993, pp. 36-72.

18] P. C. Clements, C. E. Gasarch, and R. D. Jeffords, "Evaluation Criteria for Real-Time Specifi-
cation Languages," NRL Memo. Report 6935, Naval Research Lab., Wash, DC, 1992.

[9] D. Craigen, "Reference Manual for the Language Verdi," TR-91-5429-09a, Odyssey Research
Associates, Ottawa, Out., Canada, Sep. 1991.

[10] D. Craigen, S. Gerhart, and T. Ralston, "An International Survey of Industrial Applications of
Formal Methods," NRL Report, Naval Research Lab., Washington, DC (in press).

[11] "Failure Divergence Refinement, User Manual and Tutorial," Version 1.2, Formal Systems (Eu-
rope) Ltd., Oxford, UK, 3 Dec. 1992.

[12] R. Gerber and I. Lee, "Communicating Shared Resources: A Model for Distributed Real-Time
Systems,' Proc. Real-Time Syatems Symposium, Santa Monica, CA, Dec. 1989, pp. 68-78.

[13] M. Gordon, "Mechanizing Programming Logics in Higher Order Logic," Tech. Report 145,
University of Cambridge, Cambridge, UK, Sept. 1988.

[14] C. L. Beitmeyer, P. C. Clements, B. G. Labaw, A. K. Mok, "Engineering CASE Tools to
Support Formal Methods for Real-Time Software Development," Proc. CASE '92 Fifth Intl.
Workshop on Computer-Aided Softw. Eno., Montreal, Canada, 6-10 July 1992.

[15] A. Hall, "Seven Myths of Formal Methods," IEEE Software, Vol. 7, No. 5, Sep. 1990, pp. 11-19.

[16] F. Jahanian and D. A. Stuart, "A Method For Verifying Properties of Modechart Specifications,"
Proc. Real-Time Systems Symposium, Huntsville, AL, 6-8 Dec. 1988.

[17] S. Kromodimoeljo, W. Pase, M. Saaltink, D. Craigen, and I. Meisels, "A Tutorial on EVES,"
Odyssey Research Associates, Ottawa, Ont., Canada, 10 Feb. 1993.

118] N. G. Leveson and J. L. Stolsy, "Analyzing Safety and Fault Tolerance Using Time Petri Nets,"
TAPSOFT: Joint Conf. on Theorp and Practice of Software Development, Springer-Verlag,
Mar. 1985.

[19] R. Lutz, "Analyzing Software Requirements Errors in Safety-Critical Embedded Systems," TB.
92-27, Iowa St. Univ., Ames, Iowa, Aug. 1992.

307

[20] J. S. Ostroff, "Survey of Formal Methods for the Specification and Design of Real-Time Sys-
tems," Tutorial on Specification of Time, 1991 (to appear).

[21] S. Owre, N. Shankar, and J. M. Rushby, "The PVS Specification Language (Draft),' Computer
Science Lab., SRI Intl., Menlo Park, CA, Feb. 1993.

[22] S. Owre, N. Shankar, and J. M. Rushby, "User Guide for the PVS Specification and Verification
System (Draft)," Computer Science Lab., SRI Intl., Menlo Park, CA, Feb. 1993.

[23] J. Rushby, F. von Henke, and S. Owre, "An Introduction to Formal Specification and Verifica-
tion Using EHDM," Tech. Report SRI-CSL-91-2, SRI Intl., Menlo Park, CA, 1991.

[24] J. M. Rushby and F. von Henke, "Formal Verification of Algorithms for Critical Systems,*
IEEE Druns. Softw. Engin., Vol. 19, No. 1, Jan. 1993, pp. 13-23.

[25] N. Shankar, "Mechanized Verification of Real-Time Systems Using PVS," SRI Intl., Menlo
Park, CA, 1993 (to appear).

126] N. Shankar, S. Owre, and J. M. Rushby, "PVS Tutorial," Computer Science Lab., SRI Intl.,
Menlo Park, CA, Feb. 1993.

[27] Shankar, S. Owre, and J. M. Rushby, "The PVS Proof Checker: A Reference Manual (Draft),"
Computer Science Lab., SRI Intl., Menlo Park, CA, Feb. 1993.

[28] D. A. Stuart, "Implementing a Verifier for Real-Time Systems," Proc. Real-Time Systems Sym-
posium, Orlando, FL, Dec. 1990, pp. 62-71.

308

.

II

Advanced Integrated Requiremeats Eagineerwng System (AIRES):

Processing of Natural Language Requirements Statements

1993 Complex Systems Engineering Synthesis and Assessment Technology Workshop
(CSESAW '93)

July 20-22, 1993

Washington D. C.

I
I James D. Palmer and Richard Evans

I The Center for Software Systems Engineering

School of Information Technology and Engineeringi

George Mason University

Fairfa, VA 22030-4444

1 309

AIRES: An Advanced Integrated Requirements Engineering System

AIRES is an advanced integrated requirements engineering system which has been developed to

assist users and designers in the preparation of correct requirements that accurately reflect user
needs. As such, AIRES considers natural language prose statements as the most natural media

format for user expression of system and software requirements information. AIRES supports

the management of the requirements engineering life cycle, as shown in Figure 1, through
modules and CASE tools directly aimed at support and automation of the specific processes

related to elicitation, organization, assessment, prototyping. and transformation.

ElcttinSporsiteatv anditerative itoo"Ues and

•forms g penetal utes /mc as:
Maintenanc

253nentTraceability

Pro~ingRese

ýfor! =cton s)

Figure 1 Requirements Engineering Lifecycle

AIRES provides assistance in the elicitation and capture of requirements information from users

through an innovative conceptual approach of multi-group decision support systems whose

purpose is to elicit and capture information in a consensus building environment. The AIRES

assessment modules take this information and existing specifications from legacy systems,

conditions these statements and automates error discovery. Error correction is accomplished by

the user/designer working in consort. The AIRES prototyping module may work on

requirements information directly from the elicitation process and legacy systems or from the

outputs of the assessment modules. Once requirements sets are identified as prototype

candidates, AIRES, through its systems architecture, provides access to standard tools for
construction prototypes. The final module of AIRES automates transformation from natural

language prose statements to the formal language of finite state machines through use of

StateMate, a commercial CASE tool. From this point onward traditional software development

processes take over with the user and designer assured of correct requirements specifications,
that are as error free as possible, as the transformation to design commences.

310

Requlemmnts E.•Jneerlng ObJectives and Needs

The ideal objectives in the management of the requirements engineering process are: to develop

the r of a new or modified system that are complete, consistent, correct, feasible,

maintainable, precise, traceable, testable, unambiguous, understandable, validatable, and
veaiftable. While these characteristics may represent an ideal set of features, it is not possible to

assure that one or any group of these will be met in a given set of requirements. To demonstrate

that the foregoing is true, we need only examine one or two of these features. Clearly, it is not

possible to determine that any set of requirements is complete, for not even the user knows when
a system is complete. Understandability is another elusive feature in that we must ask to whom

and for what purpose is the set of requirements to be understandable.

Clearly, the question to ask is: What is needed to manage the requirements engineering process?
First, we must involve the user/designer from the onset of the process; minimize transformations

that alter the original meaning of the statement; assess requirements statements prior to

transformations so as to provide analysis of any errors introduced by the user rather than those

introduced by the transformation interpretation process; provide for full traceabilility, both

forward from the highest level and backward from the most detailed level; develop prototypes

for purposes of risk management; and finally, assign metrics to requirements statements to

provide for validation and verification during other phases of the development life cycle.

Two major goals for AIRES are to provide the user and designer automated support to enable

them to find things that should be in a set of requirements and, conversely, to find things that
should not be in a set of requirements before any irreparable damage is done to the requirements

through trnsformations to formal specifications.

AMIES Arcldtectmre and Operatiom

AIRES represents a significant advance in the development of an enabling requirements

engineering process coupled with automated approaches to obtain the right requirements from
the user that may be made free from errots of certain types (ambiguity, conflict, redundancy,

inconsistency, etc.) without compromise of user intent. As ilumsated in Figure 2, AIRES is an

integrated environment, supporting and spanning the requimnts engineering life cycie.

3M

SOFI"WARE ENGINEERING, REQUIREMM ENGINEERING, AND ARM

ADVANCED 04IWIRATED REQUIR1dB413

ENGINEERING SYMsE (AIRES)

SU law1OMAIM

RO O QORAiMZATIM APP LM_--.•-

PIMMR I I

Figure 2 AIRES

With the AIRES approach, each activity in the requirements engineering life cycle is supported

by a set of automated CASE tools, which taken together, comprise the suite of CASE tools in the!

AIRES environment. Elicitafibn is supported by a computer supported cooperative work|
environment that features a multi-group decision support system to enable groups of users andI

designers to work together even if spatially or temporally distr'buted. In this approach to
elicitation, an evolutionary decision meeting model is formed in the context of overall software l

systems engineering that adopts the management technology of systems engineering and applies
it to software to hIp ensure that correct software is designed, and not just that software designs

are correct. The organize function is aimed at facilitating user/designer groups in organizingq
information such that related concepts are grouped together and high priority items are given

prominence. In the instance of grouping related concepts, we provide for conceptual clustering

algorithms for a variety of types of clustering. The role of priority setting falls upon thei

user/designer reaching consensus as to which ones are most important for the system under

312

consideration. In the next step of the requirements engineering process, we engage in
assessment activities using classification and clustering of requirements sets. Classification is a
process which adds knowledge about requirements, while clustering gives us the means to form
meaningful groups of requirements. Prototyping enables the identification of requirements at
risk, namely those that continue to undergo change (volatile sets); those that contain ambiguities;
those that are inconsistent or in conflict; and those that require special handling to provide
understanding such as human computer interfaces or database management systems. Finally, we
look to the transfo-mation of these sets of informal requirements statements to the formal
language of a specification. For AIRES, we have also selected a transformation to finite state
machine language such as that found in the commercial CASE tool "StateMate".

Syntax of Natural Language Requirements

The key technological aspects of AIRES are realized through the utilization of the syntax of
natural language prose statements coupled with language semantics derived from domain
specific knowledge bases; rule sets; a predefined requirements taxonomy; and weighted sets of
thesaurus of verbs and nouns, synonyms and antonyms, and key phrases for identification of
specific characteristics important for assessment, identification of high risk clusters and systems
features. This technique supports evaluation of requirements clusters for prototyping;
identification of errors such as conflict, inconsistency, and ambiguity; determination of coupling
and cohesion within and across requirements and clusters of requirements; determination of the
ripple effect impact of adding new requirements to existing systems (maintenance); storage and
retrieval functions (reuse) of specific requirements (or clusters of requirements); generation of
traceability matrices for complete auditing; and assessment of the degree of volatility in
requirements generation. All of this is directly aimed at the management of the requirements
engineering process and the management of risk in requirements engineering activities.

AIRES and Requirements Engineering Benefits

AIRES provides several requirements engineering benefits. These include the ability to
facilitate the elicitation of requirements information through multi-group decision support
system aids; to examine legacy system specifications for problems and errors; the ability to
correctly and exhaustively identify requirements specifications subject to impact through the
maintenance process of adding new functionality to these legacy systems; and the ability to
support requirements risk assessment and risk management. Other facets in AIRES include the
capability to archive and retrieve requirements specifications for reuse without the necessity of
significant investment to condition these in advance for reuse; the ability to perform forward and

313

backward traceability; the coupling of requirements to sizing and estimating tools; and the
capability to assign metrics to requirements specifications, in accord with the classification
taxonomy utilized, to facilitate the design of validation tests upon delivery.

There are several outcomes associated with AIRES operation. The application of taxonomies
and rule sets supports the determination of conflict within and across statements and clusters of
statements; the identification of consistency within and across statements and clusters of
statements; the definition of coupling and cohesion factors within and across pairs as well as
clusters of requirements; and the determination of completeness across requirements and their
clusters using domain knowledge. Additional outcomes in the application of taxonomies and
rule sets include the identification of potential ambiguity, redundancy, and internal
completeness; the definition of the ripple effect impact of adding new requirements to existing
systems; and establishing the storage and retrieval functions for specific requirements. The
application of classification and clustering techniques, in the context of predefined taxonomies
and associated rule sets, also supports the definition of the degree of volatility in the
requirements generation; the preparation of traceability matrices for complete auditing of all
requirements throughout the life of the project (including maintenance); and requirements
prototyping.

314

Bibliography

JAKBM9J Aiken. Peter R., A Hjyuernedia Worbratious for Requiremeisnu Engineering, published Ph. D.
Dissertation, George Mason University, School of Information Technology and Engineering. Fairfax, VA 1989.

IARM0931 Annour, Frank, A Risk Management Approach for Pkowofing Systems Requireisenas published PhL
D. Dissertation, George Mason University, School of Information Technology and Engineet ing. Fairfax, VA.,
1993.

IBEAMM8 Beam. Walter R., Palmer, James D., and Sage, Andrew P. Syssems En grnering for Software
Productivity IEEE Transactions on Systems, Man, and Cybernetics, Vol SMC-17, No. 2, Mareh/April 1988.

1U0OU921 Brouse, Pegg A Proces, for uam of Muli-media Information in Requirement Identification and
Traceab~iiy, published Ph. D. Dissertation, George Mason University, School of Inormation Technology and
Engineering. Fairfax, VA 1992.

P3EMME931 Emmett, Badear Multi-Group Decision Supporv Systms. Insegrwadon and Analysis of Requirements
Jnformauio#4 published Ph. D. Dissertation, George Mason University, School of Infomation Technology and
Engineering. Fairfax, VA 1993.

IFIEL911 Fields, N. Ann An £votuioway Group Decision Model for Computer Supported Cooperative Work
published Ph. D. Dissertation, George Mason University, School of Information Technology and Engineering.
Fairf~ax,'VA 1991.

ILUAN911 Liang. Yiqing. 1991, Sofhware Requiremernt Cla#Sfcation, published Ph. D. Dissertation, George
Mason University. School of Information Technology and Engineering, Fairfax VA 1991.

[MYER88] Myer. Margaret A Knowledge-Based Systemi for managing Software Requirements Volaulity
published Ph. D. Dissertation, George Mason University, School of Information Technology and Engineering.
Fairfax, VA 1988.

IPALM9OJ Palmer, J. D., Liang. Yiqing. and Wong, Lillian, Cassaification as an Approach to Requirements
Analysis, Proceedings of the Is: ASIS SIGICR Classificanon Research Workshop, Ed. Sussanne M. Humphrey and
Barbara H. Kwasnik, Toronto, Ontario, Canada, November 4, 1990.

JPALM921 Palmer, J. D., and Usiang. Yiqig.& Irdexing and chlusering of software requirements specifications,
Information and Decision Technologies April .1992.

jPALM92aJ Palmer, J. D., and Fields, N. Ann An Integrated Environsment for Software Requirements Engineering
IEEE Software May 1992.

[PALM492b] Palmer, J. D., Fields, N. Ann, and immt, Barbara, Computer Supported Cooperative Work
Environment for Multiple Spatially Distributed Groups: A Case Study 199 IEEE International Conference on
Systems, Man, and Cybernetics, October 1992.

[PFLE89J Pf leeger, Shari L An Investigation of Cost and Productivity for Object-Orkiened Development
published Ph. D. Dissertation, George Mason University, School of Information Technology and Engineering.
Fairfax, VA 1969.

ISAMS891 Samson, D. E., 1969, Automated'Assistance for Sofmware Nequirements Definition, publishedftPh.
Dissertation, George Mason University, School of Information Technology and Engineering. Fairfax, VA, 1969.

3315

I

I

REQUIREMENTS MANAGEMENT/REQUIREMENTS ENGINEERING (RM/RE)

LUKE CAMPBELL
NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION

FLIGHT TEST AND ENGINEERING GROUP, SY30
PATUXENT RIVER, MD 20670

(301) 826-7601
FAX (301) 826-7607

316

Requirements Management I Requirements Engineering (RMIRE)

To control costs, better productivity, and decrease the resources required for development and support
of products, NAVAIR-546 has developed a process which accounts for the structure of all
developments: Requirements Management and Requirements Engineering (RM/RE).

This RM/RE process is used throughout the life cycle of the product, and Is itself under constant
Improvement RM/RE establishes, controls, tracks, and engineers requirements for avionics systems.
A cornerstone to RM/RE Is the use of new automated software tools which greatly enhance the human
ability to manage, track, update and control requirements. These tools, together with new techniques
and methodologies, are combined in a process to ensure requirements are properly elicited, defined,tracked, modeled, and tested throughout the life cycle.

RM/RE Is the baseline process to which all other processes must attach; managing requirements allows
program personnel to manage all other aspects of the system engineering program. The primary steps
which we have defined for the RM/RE process are:

o Reauirements Elicitation - the process of documenting the needs and resolving the disparities
among the involved stakeholders for the purpose of defining and distilling requirements to meet
the constraints of these stakeholders.

o Reauirements Inspection/Validation - the process which involves checking the accuracy of the
products of the preceding operations, in order to validate that the requirements derived are an
accurate reflection of the user needs.

o Reauirements Analysis - the process of studying and refining user needs in terms of system,
hardware, or software requirements.

The RM/RE Process is a combination of technical engineering disciplines and an administrative
process for establishing, validating and maintaining the many requirements of a system throughout its
fife cycle.

A requirement is a statement of need, a characteristic of a need, or a condition or capability
that must be met or possessed by a system or system component to satisfy a contract,
standard, specification, or other formally imposed document or documents. The process of
defining requirements, within the context of RM/RE, encompasses the three interrelated
operations mentioned earlier, elicitation, inspection/validation, and analysis.

Application of these three interrelated operations is referred to as RM/RE. The foundation of
success for any project is dependent on the quality of its requirements and the management of
these requirements. Identification and correction of incomplete or inconsistent requirements early
In the system life cycle will help to alleviate costly and time-consuming modifications later, or
prevent development of a system which does not perform as required. Studies have shown that
requirements management errors contribute to the majority of system defects and are the most
costly to remove.

A poorly-written attempt to define a requirement will not accurately describe its author's need, will
not accurately translate this need, and will not be correctly interpreted by the developer of the
system. The result of a poorly written requirement which is not rectified will be a system
development defect.

A system development defect exists when the written specification does not describe the developed
product. System development defects can be divided into four broad categories: requirements defects,
design defects, code/build defects, and documentation defects. Each defect type produces downstream
problems, i.e. a requirements defect results in design defect(s) which then cause code/build defect(s)

317

and documentation defect(s). When defects are Identified early in the development cycle, fewer
problems will be encountered as system development progresses.

Well-written requirements will be worded to make more than one interpretation unlikely, since
requirements are read and interpreted within the same organization by persons of varied backgrounds.
A well-written requirement will concisely describe a need. Accurate translation of this need by the
system developer Is essential. Requirements will be written with the Imperative "shall." When
statements written with "shalr are contained in contractual documents, they are legally binding.

Although human intervention is required during all phases of the development process, RM/RE should
be accomplished using automated tools. It is not practical to manually decompose, analyze, and trace
each requirement. A further advantage to automation is the resulting ease of change Impact
assessments. Wherever changes are made, an automated requirements database will provide the
process for Identifying all linked requirements which also are affected.

1.0 Requirements Elicitation

Requirements elicitation involves "capturing" thoughts and ideas from stakeholders and depositing these
Ideas In a central repository. Key to requirements elicitation include capturing rationale for each
requirement, and reconciliation of requirements (using automated software tools) to assure that the
requirements are ordered and connected.

To date, the process step of elicitation has been haphazard and lacking in engineering rigor. Generally,
a specification is developed based on a previous program, and changes are added by various domain
experts. There are attempts to control the integration of requirements, but these generally fall short of
the need. The resulting product is often Inconsistent, behind schedule, and ripe for problem reports or
change requests.

A better method for elicitation Involves using automated software tools and techniques, such as
storyboarding and prototyping, In conjunction with a Requirements Elicitation Conference attended by
all stakeholders. This elicitation method allows the capture of requirements and the associated
rationale in a forum where all stakeholders are represented and a consensus Is formed.

The elicitation method requires a more intense peak of activity for the stakeholders, which should be
accomplished quickly (in several days) with the use of techniques such as storyboarding (which

"-enhance the gathering of requirements), scribes (which assemble the requirements) and automated
tools (which quickly sort and categorize the requirements). Within the requirements elicitation process
are five subprocesses:

o Capture Requirements from Stakeholders
o Requirements Reconciliation (Creation)
o Initiate Requirements Traceability
o Stakeholders' Input Complete Determination
o Establish Database

1.1 Capture Requirements from Stakeholders

Upon Initiation of a program, Inputs are received from the stakeholders; these Inputs Include the system
requirements and all applicable documents. The most advantageous manner in which to acquire the
requirements is In a Requirements Elicitation Conference, where all stakeholders are gathered In one
place to provide and reach a consensus on inputs, linkages, and rationale. New system requirements
originate from deficiencies In existing systems' capabilities due to new or enhanced technologies, or
due to newly identified threats. These deficiencies are examined and a Mission Needs Statement
(MNS) Is Issued which defines the need for the system. The MNS is translated by OPNAV In to the

318

Operational Requirements Document (ORD). From the requirements of the ORD, a requirements
database is established. After establishing the requirements database, and as system development
progresses, there will be additional input to this process In the form of approved changes. These
requirements changes wilt be captured In the database, keeping a current baseline for the requirements
at all times. Automated requirements management tools are available for establishing, maintaining,
and updating the database.

1.2 Requirements Reconciliation (Creation)

During the Requirements Reconciliation (Creation) process, all linkages between requirements should
be defined and documented. This can be done using a requirements management tool. Requirements
should flow down from the high-level requirements in the ORD to the next succeeding lower-level
design specification. High-level requirements (parents) should be decomposed into lower-level
requirements (children) in the same document or in successive multiple lower-level documents.

Proper RM/RE en res complete decomposed flowdown, so that there are no barren requirements (high
level requirements without children). Similarly, orphans (low-level requirements without parents) should
not exist. In addition to requirements in the parent-child domain, peer relationships, in which the linked
requirements populate the same level, likely will exist. Requirements which lack essential relationships
should be reconciled. The use of techniques such as storyboarding, lexical analysis, and rapid
prototyping should be employed to reconcile requirements which are barren or orphaned.

1.2.1 Storyboarding is a modeling technique that extends from requirements analysis and simulation
methodology. A storyboard is a sequence of displays that represents the functions that the system
may perform when formally implemented. The intent of storyboarding is to provide a means of better
defining and validating system requirements. Storyboarding provides a means to:

"o more precisely establish what to build and how to specify it,
"o explore alternative designs and man/machine interfaces,
"o promote synergism among stakeholders.

The use of storyboarding as a technique to verify requirements definitions and to establish and maintain
specifications provides several benefits. Characteristics of the system can be examined, user feedback
can be obtained, alternatives can be examined and evaluated, and problems can be detected early and
corrected.

1.2.2 Lexical Analysis is a methodology for examining the complexity, elements, and the relationship
of words or vocabulary from its grammar and construction. The process includes analyzing the syntax
of natural-language statements and then classifying the requirements according to similarities. Once
the requirements are classified, they must be examined for imprecise and ambiguous words, conflicts
among quality-metrics must be detected, and the Identified problems must be presented to the
stakeholders for clarification and resolution.

1.2.3 Rapid prototyping is a methodology which allows quick development of a preliminary design or
model of a system to define, analyze and/or validate the characteristics of a proposed system. It is a
method to verify specifications for completeness and effectiveness.

1.3 Initiate Requirements Traceability

A database of proposed, or candidate, requirements should be established, and must be updated when
necessary. The inputs to this database contain: system requirements, design requirements,
hardware/software requirements, and test requirements. Other associated data elements should be
entered for each requirement, such as method of testing, rationale, date of origination, linkages, etc.

319

The populating of the database Is an iterative process, which begins as soon as the RM/RE process Is
initiated. As requirements are Identified, each Is entered in the database as a requirement candidate,
pending reconciliation, traceability analysis, and stakeholders' approval. The database should provide
traceability of all requirements and any exceptions.

In general, a requirements database can be created and maintained using a number of commercially
available database management software packages. The benefits to using a database manager are the
ability to rapidly store, edit, organize, analyze, and retrieve large amounts of data.

Several vendors have customized database managers to support requirements management and
analysis. These products can save considerable time and effort needed to customize generic database
managers for RM/RE support.

AlN requirements must result from a decomposition or synthesis of the higher level requirements defined
In the ORD. The requirements are analyzed for traceability to determine if any of the higher level
requirements were not decomposed, are not linked to a higher level requirement, or do not adequately
describe the higher level requirement. The resulting linkages form a requirements traceability "tree.0
The traceability tree shows the hierarchical decomposition of the ORD requirements. The traceability
tree should be analyzed to ensure that there Is complete traceability between the ORD and the lower
level specifications, as applicable (i.e., there are no missing or excess requirements).

If an ORD requirement does not decompose when translated into lower-level specifications, then either
the high-level requirement does not actually exist, and it should be removed from the ORD, or the
lower-level specification needs to be modified to Include the decomposition. At a Requirements
Inspection Conference (RIC), all irregularities must be examined in order to reach a consensus on their
resolution. Each group of requirements that satisfies a single ORD requirement is analyzed to ensure
that the respective groups do not conflict with each other and that they completely satisfy the higher
level requirement.

1.4 Stakeholders Input Complete Determination

Prior to certifying the establishment of a baseline requirements database, a decision must be reached
that all stakeholders' inputs have been elicited and documented. All requirements in the ORD must be
Identified, and traceability mechanisms must be in use. This list of requirements becomes the
agreement between the OPNAV sponsor, PEO/PMA, and NAVAIR. It is Imperative that requirements
are clearly understood and traced through to implementation. If input is not complete, the process of
obtaining requirements from stakeholders must continue. When the process Is complete, the
requirements database can be defined as "baseline."

1.5 Database Establishment

After requirements have been reconciled, the stakeholders ratify that each candidate requirement Is a
system requirement. The system requirements and associated data elements establish the
requirements baseline. These baseline requirements are embodied in a baseline requirements
database. This database is maintained and modified throughout the life of the program. Configuration
management procedures must then be applied to any request for modification of any requirement.

1.5.1 Database Access.

There are two subprocesses for database access: Queries and Reporting, & Database Modification.
Queries and Reporting provides the mechanism to access the database to retrieve Information on the
requirements and associated characteristics residing In the baseline requirements database. The
Information can be requested via Individual ad hoc questions, or can be requested via ad hoc or pre-
programmed report formats. Presentation of the requested information is In the form of on-screen

320

i

"individual responses, or on-screen or hard copy reports. Modifications to the baseline requirements
database can only be effected after all CM procedures have been fulfilled. The individual responsible
for database administration is the only person authorized to modify the database.

2.0 Requirements InspectionNatidation

I Requirements InspectionNalkdation is the process of determining and inking the relationships between
technical documentation. Inputs to this top level process Include the entire realm of military and DoD
standards, plus the system documentation available at the time of Inspection: the ORD, the System
Specification, and the preliminary SOW.

Another aspect of Requirements InspectionNaldation is holding conferences to review traceabilty
deficiencies. Barren requirements, orphan requirements, ambiguous, untestable, and negatively stated
requirements all must be examined. The practice of holding conferences promotes communication
among team members. Outputs from the Requirements InspectionNalidation process include program-
applicable standards, with the appropriate sections inked to the requirement(s) that reference them, as
well as coordinated (properly linked and traceable) system requirements. Within the Requirements
InspectionNalkdation process are three subprocesses:

o Requirements Validity Determination
o Authenticated Requirements Determination
o Forward Inputs to Baseline Requirements Database

2.1 Requirements Validity Determination

The result of Requirements Inspection/Validation determines the validity of the requirement update. If
the process ascertains that a proposed requiremnent update is invalid, the proposed update must be re-
analyzed in the Requirements Analysis Process.

2.2 Authenticated Requirement Determination

The Stakeholders' Inspection/Validation authenticates the requirement update. Authentication is
approved by a single point of authority designated by the PMA. If authentication is not approved, then
the proposed update must be re-analyzed in the requirements analysis process.

2.3 Forward Updates to Baseline Requirements Database

Approved updates are forwarded to the individual responsible for database administration for Inclusion in
the database.

3.0 Requirements Analysis
Requirements Analysis is the process of determining applicable standards, performing trade studies,
reconciliation (or refinement), and cost/schedule impact analysis for each requirement. This process is
performed iteratively on each new requirement. Important to this process is paying particular attention
to the interaction between requirements. As development progresses and more is leamed about the
system, resultant changes will affect this Interaction.

A change to a requirement may have a significant affect on other system requirements. Therefore, a
change impact analysis must be carried out for every change request or proposed remedial action.
Impact assessment is an Iterative process. Once the affected requirements have been identified, all
directly associated requirements must be identified. These associated requirements must be assessed
for impact. This process continues until no associated requirements are affected. The subprocesses
for the Requirements Analysis Process are:

I 321

o Determine Applicable Standards
o Trade Studies
o Requirements Reconciliation

3.1 Determine Applicable Standards

From system requirements, DoD STDs, MIL STOs, and DoD Instruction 50002. the appropriate
requirements can be determined for the following disciplines: maintainability, reliability, survivability,
safety, EMCJEMI, human factors, ILS, QA, produciblity.

Inputs such as specification numbers and paragraphs for each requirement from other functional
disciplines within an organization must be solicited and coordinated. The output will be linkages
between requirements and paragraphs In the standards.

3.2 Trade Studies

Trade Studies are the Inquiry and Investigation of the results of choosing one method of accomplishing
a requirement over another. This usually takes place In terms of off-the-shelf solutions versus building
requirement-specific solutions ('make or buy" decisions). Trade Studies should be accomplished
before proceeding to the next RMIRE process step of Requirements Reconciliation (Refinement).

3.3 Requirements Reconciliation (Refinement)

Requirements Reconciliation (Refinement) is the process of integrating requirements within models and
prototypes to evolve a picture of the completed system.

3.3.1 Specification Modeling

Specification Modeling Is used to evaluate the correctness and performance of a system specification.
Specification Modeling provides a more easily understood translation of the specifications requirements.
Modeling ensures the completeness and correctness of the specification and validates that the
requirements meet the needs of the end-users.

Specification Modeling Is accomplished by translating the specification's written words, using a
structured methodology, Into a graphical and operable/executable language. Using this language, the
specification can be visualized, analyzed, and operated by end-users. If execution of the model
indicates that the system will fail to meet the users requirements, the model is modified until a
specification evolves that meets the requirements.

3.3.2 Architectural Modeling

Architectural Modeling Is used to evaluate the correctness and performance of the architectural design
of a system. Both hardware and software performance are evaluated by simulating the model derived
from the system specification. Correctness is evaluated by executing, during the simulation, assertions
(consistency constraints) that the evaluator/analyst/designer attaches to each design specification
component.

Automated tools can be used to Improve the quality of complex systems and reduce the cost and time
required to design, implement, and optimize such systems. Tools that are capable of simulating a high
degree of concurrent processing are particularly well-suited to model computer hardware and software
systems within avionics systems, especially the timing considerations that are Important to real-time
processing environments.

322

3.U.. Prototyping

Prototyping is a technique used to demonstrate the desired functionalty or behavior of a proposed
system. Although prototyping is often characterized as a risk management technique, it Is actually a
requirements generation and valdation technique that reduces risk through improved system
requirements. What makes prototyping so attractive (and effective) Is that computer-aided tools have
made the technique an Inexpensive and rapid means to address system requirements early in the
system development life cycle. Prototyping has the potential for improving a system engineering effort,
but cannot guarantee Its success. It is Important to understand that prototyping augments, rather than
replaces, the traditional system engineering process of specification, design, build, and test.

Prototyping has different meanings depending on whether it deals with hardware or software. For
hardware, prototyping typically refers to a well-defined activity in DEMVAL or E&MD, where a physical
model, exhibiting all the essential requirements as a guide for further production, is produced in
advance. In contrast, software prototyping is not associated with a specific acquisition phase and does
not rely on having the product characteristics well-defined in advance. Its primary goal Is to serve as
a learning vehicle to provide more precise ideas or specifications about what the target system should
be. In many situations, a software prototype does not become part of the final product.

Although there are several categories of prototyping, exploratory prototyping, where the emphasis is on
clarifying requirements of the target system, is commonly used during RM/RE. Exploratory prototyping
focuses on communication problems between developers and prospective end-users, particularly In the
early stages of system development. The developers often have limited information about the
intended application, while the end-users have no clear idea of what the system must do for them. In
this situation, a practical demonstration of possible system functions serves as a catalyst to elicit ideas
and promote a creative cooperation between all the stakeholders. Such a demonstration does not have
to focus on one particular solution, but can point out alternatives whose respective merits can be
discussed. The prototype is an aid for establishing the features a target system should Incorporate.
These are subsequently codified in the systems specification.

3
I

1 323

COMPtT~ER SECURIT, SAUETY AND
RESilIECE REQUIREMENIS

AS PART OF REQUIREMOENT ENGINEERIG

Pm¶pamed by DWJ Mostert and SH von Soims

Rand Aftikaans Univeruity
Deparamena' for Computer Science

PO0Box 524
Johannesburg

2&V0
South Ajoica

Tel: 2 711 4892847
Far: 27 11 489 2138

E MaillAddress. basie~rkw. rau. ac.za
324

COMrPER s RITY, SAFETY AND
RCE REQUnUMEN

AS PART OF REQUIEMENT ENGINEERING

JABSTICT

Computer se fty, sey and meiience ar usually pkeented o&y qer a system has been
devloed. This leaves a lot dfpotendlr isks ta must be accoun• d for at huge ca at
a later stage. This ankle takes coi• pter seawliy. sqtey and milieic ngh to the
beginnin qf the systems deveopment We~ cycle - the user requdImmnemst cd.

Lbnlted roference was *found In' the fiterauww on how to detinmine the requirmentse for-
computer secivy, s*ety and relience Ti article pposes a mihodir den and
pec•*• computer sewhrty, sq•ey and di c re men and to Inclde these as pan
Qf the user requirement sn.

By using thi methodology a cwnpkmt ut of computer secrhy, sq*0t and resilienc
requirements can be determined and specfed as early as possible during the development
phase.

This me•todology Is based on the dqlnltlon of a requiremena matrix by a Constraints
& neei. The monrance of the different computer seuty, sifty and resilience
requiremenw will be rated in reaton to the functional requirement, and applicable counter
measume will be allocatea. This wNll lead to justiftable costs for unplmenting computer
security, sofety and resilience for applicable systems.

The complete set of computer security, safety and resilience requiremenwn can be used as a
reference afer implementation of the system to determine whether all the computer securgy,
safety and resilience requirements have been accounted for.

ABOUT THE AUTHORS

DNJ MOS7ERT

A computer consultant. Currently working towards a Phd degree at the Rand Afrikaans
University.

SN VON SOLMS

Head of the depaqtent for Computer Science at the Rand Afrikaans University.

325

I
I

INTRODUCTION

Computers are inceasigly used in environnts where failures cannot be tolerated

and where errors would have dangerously unpredictable results. [21

Computer security, safety and resilience are usually only "implementedu after

development of the system. For systems such as high performance transaction-,

process control- and other safety critical systems, it became important for computer

security, safety and resilience to be 'part- of the system right from the user

requirements specification of the system. Therefore it is important to determine and

specify the computer security-, safety- and resilience requirments (hereafter referred

to as CSSR) as an integrated part of the functional system requirements of the

computerized system during the user requirement specification phase of systems

development. Limited reference was found in the literature on methods to

determine or specify computer security-, safety- or resilience requirements for

a computerized system.

326

This article will propose a methodology used on two levels to achmnw and Xjfy

computer security, safety and resilience i s as part of the use requirement

The first level of this methodology will be known as the Constraints

Acquisition methodology (CAM) and will be used during determination of

systems requirements

The second evel of this methodology will used during determination of the

detail software requirements for the system and will be known as CAM/S.

A Constaints Engineer is a specialist regarding computer security, safety and

resilience for a specific domain of systems. The Constraints Acquisition methodology

(CAM) and Constraints Acquisition Methodology for Software (CAM/S) are the tools

the Constraints Engineer will use to make sure that the CSSR requirements are part

of the user system requirement specification and of the user software requirements.

327

Section 2 will show where that CAM and CAM/S extends the existing computer

systems engineering process to include the CSSR requirements.

Section 3 will briefly explain the steps to determine the functional system

requirements.

Section 4 will discuss the Requirements- and Counter-measure

matrixes, which form the basis for the methodology to deUrmine and

ify computer security, safety and resilience requirements

as part of the user requirement specification.

Section 5 of this article will explain the Constraints acquisition

methodology for CSSR elicitation, using the matrixes introduced in Section 4.

Section 6 will explain the Constraints acquisition methodology for

Software. This section will show the relationship between CAM and CAM/S.

CAM/S will be used for CSSR elicitation during user software requirements

determination and specification.

328

2 COMPUTER SYSTEMS ENGINEERING AND CAM / CAM/S

This section will show where CAM and CAM/S fits into the existing computer

clgineerng processes.

The process from exploring the need (as specified by the user or as dictated by the

business), up to implementing a computerized system can be defined as computer

systems engineering. This process includes tasks like:

"* specification of the system requiremnts,

"* the software development life cycle and

"* the hardware development life cycle.

User requirements specification will be done during each of these tasks in more or

less detail. During the task of specifying the system requirements it is important to

detrm-ine and specify the global system functions (hardware and software functions).

Therefor it is important to determine the CSSR requirements bearing in mind the

global picture of the system. During the Systems development life cycle it is

important to expand the "system requirements" into detail software requirements. At

329

this stage it is important to also determine the CSSR requirements for each of those

detail software requirements. This will be illustrated in Section 6 of this article.

The process of computer systems engineering can be represented by the following

diagram, which also shows where CAM and CAM/S fit into the whole process. [1]

I Conceptional U

Elicitation
SSystems
requirements CAA!

* U]

* U

Trade-off

Hardware Software
engineering engineering

Software
requirementsi CAMV/S

Specific
Elicitation

Figure 1 - The process of Computer systems engineering
and CAM, CAM/S

330

2.1 SYSTEM REQU EMENT - CAM

The first step in the development of a computerized system can be characterized by

the specification of the system requirements. This step precedes both hardware and

software engineering.

The major objectives [1] of this step are to:

0 Evaluate the systems concepts for feasibility, cost benefit and business needs

* describe the system interfaces, functions and performances

* perform preliminary functional systems requirements and design. Part of this

will be to specify the systems requirements. The specification of system

requirements can be accomplished in different ways. It can be an informal

description of the requirements or, at the other extreme be a more formal

method of a mathematical description of the requirements. It can also be a

process of an informal description that *develops" into a more formal

description.

* allocate functions to hardware, software and supplementary systems elements

* establish cost and schedules constraints.

This paper will concentrate on the informal description (third objective) of systems

requirements. This informal system requirement will be extended to include CAM.

331

I

2.2 SOFTWARE DEVELOPMENT LIFE CYCLE - CAM/S

After determining the system requimnts, certain user requimnts (functions) are

allocated to be implemented in software. These function will be expanded in an

attempt to satisfy, mainly the following objectives [1]:

"* uncovering the flow of information

"* describe the software functions, validation requirements and design

constraints.

Keeping in mind the overall CSSR requirements it is also important to determine and

specify the CSSR requirements for these detail software requirements. Using CAM/S

as a tool the CSSR requirements can be determined and specified.

332

3 SI S IN FUNCTIONAL SYSTEM REQUIREAENTS ACQUISITION

It is useful to describe the process of user functional system requirements acquisition

through the following steps [3]:

* Elicitation

* Formalization

* Validation

The methodology proposed in this paper will extend the elicitation and forbm0'zation

steps to include the CSSR requirements with requirements acquisition.

333

4 BASIS FOR TBE CONSTRAINTS ACQUISITION METHODOLOGY (CAM)

& CONSTRAINTS ACQUISITION METHODOLOGY FOR SOFTWARE

(CAM/S)

Determining the functional system requirements can be a very complex and tedious

process. Proven methods and methodologies exist for determination and specification

of the functional requirements. The determination of CSSR requirements received

very little attention in these methodologies. The lack of a method (how) to determin

and specify CSSR requirements during this phase inspired this study.

4.1 DOMAIN OF SYSTEMS

If we consider, for example, a domain of runway control systems, typical objects are:

runways, aircraft, pilots a9d control towers. These objects are related to each other

in a specific way, and therefore the CSSR requirements and counter measures that

will be implemented will be the same for all systems in this domain. Only the degree

of importance of the different CSSR requirements and counter measures will vary

from system to system.

334

I
I
I

I 4.2 THE REQUIEMENT- AND COUNTER MEASURE MATRIXES AND THE

ROLE OF THE CONSTRAIR ENGINEER

ICAM and CAM/S is based on two sets of matrixes, one set for the requirements and

Sone set for the counter measures. Although the detail level of the user requirements

will differ between CAM and CAM/S the basis for using the two matrixes will be the

same. A set of matrixes will be defined for CAM and a different set of matrixes will

I be defined for CAM/S.

A Constraints Engineer will complete these sets of matrixes. For the purpose of this

article, a Constraints Engineer is a computer security, safety and resilience specialist

who specializes in the domain of the required system. The paragraphs below describe

the role of the Requirements and Counter measure matrixes which forms the basis of

CAM and CAM/S. The Constraints Engineer and his responsibility in setting up

I these sets of matrixes, will also be discussed.

I
I

1 335

4.2.1 matrix sets

During development of the CAM (to be discussed in section 5) and the CAM/S (to

be discussed in section 6) it was important to represent the CSSR requirements in

relation to:

"* thefunctional /qurements of the system. For every functional requirement

of the system a specification of the CSSR requirements for that functional

requirement must be done.

"* the "enWrvnment" that the system will operate in. The Users (people) of the

system, are "part' of the system and are one of the major components that can

jeopardise or be jeopardised by the system. Therefore it is important to

specify the CSSR requirements relating to these people. An example of this

requirement can be to implement the division of responsibility.

Every form of technology that will be used to implement the system brings its

own kind of risk. Therefore it is also important to look at the CSSR

requirements in relation to the technology to be used. For example

implementing a system under the DOS operating system introduces a different

336

risk as oppoaed to a system implemented under UNIX.

To repmsent the relationsuhp between a CSSR requreent the functional

ies of the sytemn and the environment of the system a three dimenional

matrix .equirements Matrix) is used. This matrix indicates the sub-elements of the

specific CSSR requirement on the x-axis, the functionl requirements of the system

on the y-axis and the "environments on the z-axis. [4] also represents the environment

in a matrix format.

The sub-elements of the CSSR - requirements are:

"" Compuer Swurky ,wuremm:

"* Confidentiality

"* Availability

"* Integrity

"* Assurance

"* Reliability

"* Danger of being out of order

"* Resilfce rqduirmen

* Availability

337

"* Reliability

"* Assurance

The Requirements Matrix (figure 2a) for computer security, the CS-Requirements

MatrWx, can be represented as a three.dimensional matrix with:

"* x-ma representing the sub-elements of computer security (confidentiality,

availability, integrity and assurance). These dimensions cover the whole

spectrum of computer security.

"* yad representing the high level functional requirements of the required

system. These requirements can be determined during sessions with the users

or can be domain knowledge and can be specified in different detailed levels.

"* z-axs representing the relevant components of the computer system, (the

"environment" as discussed on a previous page).

Requirement matrixes must also be defined for Safety, the S-Requirements matrix,

and Resilience the R-Requirements matrix, as indicated in the figure below.

(Fig 2b & c)

338

People People

Req I Req I

Req n Req n

4, .~ C 0i

CC

o 0

Computer Security Requirement Matrix Safety Requirement Matrix
(CS-Requirements Matrix) (S-Requirements Matrix)

(a) (b)

Technolg
People

Req I

Req n

C

Resilience Requirements Matrix
(R-Requirements Matrix)

(c)

Fligure 2 - Requirements Matrixes

339

4.2.2 The Constraints Engineer

The metnodology, CAM and CAM/S as described later in this paper, provide tools

to the Constraints Engineer, that can be used to determine and represent the computer

security, safety and resilience requirements.

The Constraints engineer creates the framework of a requirements matrix by assigning

the x,y and z-axes to each of the three matrixes. The initial matrixes will create an

overview of the framework which can be specified in more detail in CAM/S. This

framework of the requirements matrixes can be used to structure questions used to

determine CSSR requirements from the users.

The importance of the CSSR requirements can be rated by the Constraints Engineer

on a scale from 0 to 3. A rating will be done for each cell of a three dimensional

requirements matrix. Possible ratings allocated by the Constraints engineer are shown

in Table 1.

340

0 Noa"d

2 Import"

3 Very impormt

Table 1 - Ratings allocated by the Constraints Engineer

After completion of a specific matrix, these "ratings* can be represented and

manipulated on a spreadsheet as discussed in paragraph 5.2.3.

Although completion of the requirements matrixes will be time consuming it is similar

to some of the processes used in some risk analysis packages. This step by step

determination of the requirements will guarantee a complete set of CSSR

requirements.

341

4.2.3 The Counter-measure matrixes

A domain of systems introduces different objects that are related to each other in a

specific way, and therefor the counter measures for the risks introduced by these

systems.must also be the "same" but possibly of different intensity. For example for

a runway control system, the pilots will always issue landing requests. The security

requirement can differ depending on the organization that will use the system. A

military environment might require more security measures than a cargo carrier.

The ratings on the requirements matrix done by the constraints engineer can be used

for determining a set of necessary counter measures for a specific CSSR requirement.

The Counter-measure matrix contains the counter measures for a specific domain of

systems.

These counter-measures matrixes are matrixes which are built-up, by the constraints

engineer, after developing numerous systems. A counter-measure matrix will

represent the ratings of the constraints engineer, as in Table 1, in relation to:

* the different sub-elements of the specific CSSR requirement For example,

the different sub-elements for the computer security requirement, are

342

confidentiality, availability, integrity and assurance

* the environment of the system (See paragraph 4.2)

Using the rating of the constraints engineer, the counter measures applicable to the

specific CSSR requirement, can be determined.

This matrix will form the logical link between the CSSR requirements and the counter

measures needed to address the CSSR requirements.

A Counter-measure maurix is represented as a three dimensional m.f.ix with:

* the x-axis representing the rating 0 - 3

0 the y-axis representing the sub-elements of the specific CSSR requirement.

For example, for the Computer Security Counter measures matrix (CSCM-

matrix) the y-axis will be confidentiality, availability, integrity and assurance.

The same format holds for the Safety Counter-measures matrix (SCM-matrix),

and the Resilience Counter-measure matrix (RCM-matrix).

343

* the z-axis giving the relevat components of the computer system (the

environment).

Each cefl (x~y,z) of the matrix wil contain the counter measures applicable for

a domain of systems.

Figure 3 below indicates the CSCM, SCM and RCM matrixes.

1 44

Tehnloy lchno

People People

""Integrity Danger of
Assura~eOut of order

Assurance

0 1 2 3 0 1 2 3

Computer Security Counter Measure Matrix Safety Counter Measure Matri:
(CSCM Matrix) (SCM Matrix)

(a) (b)

Technolog

People

Availability

Reliability

Assurance

0 1 2 3

Resilience Counter Measure Matrix
(RCM Matrix)

(c)

i Figure 3 - Counter measure matrixes

1 345

It should be clear to the reader that these Counter-measure matrixes ae created

through experience and expertise in the relevant areas.

5 CONSTRAINTS ACQUISITION METHODOLOGY (CAM)

Having now discussed the CSSR Requirements-matrixes, and the CSSR Counter-

measure matrixes, we now show how the Constraints Engineer uses these matrixes

to build CSSR into the functional system requirements.

The elicitation step will start of with an initial "discussion" between the User/s, the

Requirements Engineer and the Constraints Engineer. The rest of this article will

concentrate on the role of the Constraints Engineer.

The elicitation step usually takes the form of a "brain-storming session%, whose goal

is achieving a consensus among a group of users about what they want. During the

elicitation step, the requirements engineer acts as a facilitator.[3] During this phase

the constraints engineer will:

346

I
I
I

5.1 Classify the system or part thereof, according to the initial specified functonal

I rquiemet in adomain. The following are examples of domains:

0 safety critical systems

0 process control systems

0 • on-line, networking systems

* batch systemsI
I 5.2 Compile the CSSR Requirement matrixes

I 5.2.1 Construct the framework ("lay-out") of the CSSR requirement matrixes by

I determining:

I 0 the classes of users

0 the relevant components of the computer system that will be applicable to the

Srequirements (the y and z axis) (See section 4.2.1)

I 5.2.2 Populate each of the 3 requirement matrixes by rating the need for the specific CSSR

requirement in relation to the functional requirement and the relevant components of

Sthe computer system, for each of the 3 CSSR-requirements, i.e. Computer security,

347

I

Safety and Resilience. Ratings are determined as set out in Table 1.

Determining the specific rating can be done by restating each requirement as a

question. For example, what is the requirement for confidentiality by functional

requirement 1 used for.user 1? The answer to this question can be answered by:

"* the user

"* existing policies

* domain knowledge, for example it is accepted that a pin code should be

included in an auto teller request

The answer to this question can be rated by the requirements engineer on a scale 0

to 3. 0 meaning no requirement and 3 meaning an important requirement. If the

answers can be answered by more than one source, an average rating can be used.

348

Each CSSR requirements matrix must be completed for each of the functioma

requirments (y-axis), and each of the elements in the environment (z-axis).

5;2.3 Represent the'resultant information on a spreadsheet.

Having determined the consent of the CSSR-matrixes during the elicitation phase, it

is now used during the formalization phase.

During the formalization step of requirements acquisition the Constraints engineer.

5.3 Represents these ratings on the initial high level functional flow diagram or context

diagram if applicable.

5.4 Map the requirements matrixes to the counter measure matrixes for this domain of

systems.

5.5 From these matrixes the counter measures for the CSSR requirements can be listed

per requirement. Cross references to counter measures can be eliminated at this

stage.

349

At this stage the counter measures necessary to achieve the required computer

security, safety and resilience in the newly planned system, had been determined, and

can now be 'designed into' the system right from the beginning.

Determining the CSSR requirements using the Constraints Acquisition Methodology

described above, had now been done on a thorough step-by-step way, and not by any

ad hoc guesses.

350

6 CONSTRAINTS ACQUISMON METHODOLOGY FOR SOFTWARE (CAM/S)

CAM/S extend CAM to determine and specify the CSSR requirements during the

software development life cycle. CAM/S use some of the deliverables of CAM and

produce the table of counter measures for the requirements to be implemented in

software. A similar methodology CAM/H can be developed that will address the

requirements to be implemented in hardware.

6.1 INPUTS AND MAJOR DELIVERABLES OF CAM/S

The following figure gives an indication of the relationship between CAM and

CAM/S.

351

CAM

CSSR-Requirements Spread Table of Counter

Air

I I

Importance of Table of Counter measures

CSSR-requirements for software

FIgure 4 - Inputs and deliverables of CAM/S

352

6.2 CAM/S METHODOLOGY

6.2.1 Constrct the se of requirm nbmatri for software. Using th so of

reguirements matrixes from CAM, identify only those nrquirements for

implermentation in software. The following figure (figure 5) sw the requirements

matrix for computer security. In this case requirements 2, 7, ... n wee those

specifically relevant to Software implementation. Similar matrixes must be

constructed for safety and resilience.

353

T~ech n

Techi 1 /

Peopleon

People / 7' 7

Req 2

Req 7

Peq n

C

C

F~gure 5 - Requirements matrix for computer security

354

6.2.2 Complete the ratings of the requirements matrix on the spreadsheet. Au example is

given in FMg. 6 of the requirements matrix spreadsheet for computer security.

COMPUTER SECURITY

_A"Bnbf Ji8grky Anumrae

Req 2

Req 7

Req.a

Figure 6 - Spreadsheet of the Requirements matrix
for Computer Security

355

I
i
I
I

6.2.3 Determine the detail requirements and constrct the new set of Requirements

matrixes. An example of the requirements matrx for computer security is indicated i
in FIg 7 below. This example show that requirement 2 was expanded into

requirement 2.1 - 2.3. These detailed requirements is indicated on the y-axis of the

requirements matrix.

356

Techn

Tech I

People n

People Ix

Req2
Req 2.1
Req 2.2
Req 2.3

Req 7
Req 7.1

0

Req n

MC

I-,

Figure 7 - Requirements matrix (Computer security) for
function to be implemented in software.

357

* To populate each of the requirements matrixes make use of the process as

described in paragraph 5.2.2.

* Represent the resultant information on the spreadsheet. Indicate the

information from the Requirements matrix, from CAM.

358

COMPUTER SECURITY

Codlty Avaabft Iity Arace

Req 20

Req2.1 2

Req 2.2 2

Req 2.3 3

Req 7

Req 7.1

Req n _ ___

FIgure 8 - Spreadsheet for the requirements
matrix (computer security) for software requirements.

359

6.2.4 Represent this ratings on a high level flow diagram.

6.2.5 Map these ratings of the requirements matrix to the counter measure matrix. This

counter measure matrix will only contain the counter measures applicable to

requirements to be implemented in software.

360

I!

7 REFERENCES

[1] R.S. Pressman, "Software Engineering a Practitioners Approach", McGraw-Hill

pp 119, 1982

[2] F.G.F Davis, R.E. Gantenbein, "Responding to Catastrophic Errors: A Design

Technique for Fault-Tolerant Software", Journal for System Software, pp 243 -

251, 1992

[3] H.B. Rubenstein, R.C. Waters, "The Requirements Apprentice: Automated

Assistance for Requirement Acquisition," IEEE Trans. Software Eng., Vol 17,

no.3 pp 226-240, March 1991

[4] P.G. Brown, "QFD: Echoing the voice of the customer", AT & T Technical

I Journal, pp 18 - 32, March/April 1991

3
I
I

1 361

6.2.6 List the counter measures per requirement

Campetat Securiy SOfeY RaIeaew

Req 2

Req 2.1

Req 2.2

Req 2.3

Req 7

Req 7.1

Req 7.2

Req a

FIgure 9 - Ust of counter measures per requirement

362

I
I
I
I
I

I PANEL PAPERB8

!I

I
i

363

DISTRIBUTED DESIGN OF COMPUTER-BASED
SYSTEMS: TRACEABILITY

Stephanie White
Grumman Corporate Research Center

MS A08-35
Bethpage, NY 11714

Abstract. Distributed computer-based systems are Dorfman estimates that there awe 250 requirements
complex due to their size, heterogeneous nature, and the in the hierarchy for every system level requirement
dynamic interdependency of their components. (Dorfman 91). This creates a vast network of inter-
Hardware and software are usually developed by a related information. Traceability of all requirements
number of companies which the prime contractor and and development information is prohibitive. It may be
customer must rigorously monitor and control. unnecessary or undesirable (considering overhead) to
Engineers and managers need traceability for control. maintain linkages between less significant or non-
They must trace requirements and design decision critical requirements ond every output related to them
dependencies to create a complete and consistent (Ramesh et al. 92).
design, to understand the impact of change, and to Nevertheless, we should apply traceability with as
perform re-engineering without introducing errors. much rigor as possible. One of the reasons for tracing
Automatic compilation of software and silicon may information is to support re-design when requirements
eventually eliminate the need for traceability between are modified, which can happen during or after
formal specification and end-product, but traceability development. It is difficult to predict in advance what
will still be needed for tracing textual requirements and may change; even non-critical requirements may be
design decisions to formal specifications and test cases. modified. Without traceability, requirements changes
This paper discusses the need for traceability, current may not be communicated to a group affected by the
practice and feasibility, requirement flowdown. Our experience is consistent

with Dorfman's: "more of the requirements problems
INTRODUCTION observed in system development are due to failures in

requirements management than in the technical
Managers need traceability to check status and functions" (Dorfman 91).

completeness, and engineers need traces to develop, To support impact assessment and redesign, we need
test. and change the system. Unfortunately, there is more than a connection between document paragraphs,
little software engineering research on traceability and more than a link between a requirement and a
(Finkelstein 91). Researchers are concentrating their designed function or test. We must be able to trace
efforts on automatically transforming detailed formal threads of behavior from an Operational Concept
specifications into efficient software programs. When Document to detailed threads in a system behavioral
changes are necessary, engineers will change the formal model We must awce subsystem design decisions to be
specification and the "specification compiler" will sure they are not in conflict with system design
generate new software. Automated software generation decisions, track that fault tolerant and other non-
is already feasible for software that is not distributed or functional requirements are met, and validate that an
high performance. If hardware becomes sufficiently entire requirement is satisfied, when the requirement
efficient, specification compilers will become a reality, traces to more than one entity.
At that time, traceability from formal software
specifications to code will no longer be necessary. TRACING BEHAVIOR
However, traceability will still be needed from high
level goals, policies, and textual requirements to the An Operational Concept Document (OCD) describes
formal specification and test cases. how the system will be used. It includes a description

The system engineer's need for traceability cannot of environment actions (operaw or other system) and
be resolved by automated code generation. System corresponding system actions. System behavioral
design and validation require tracing from high level* requirements, which should be traced from the OCD,
missio goals to policies for achieving those goals, and ame usually specified using stimulus-response threads
to system requirements, design concepts, tradeoffs, dth cross function boundaries. Unfortunately, current
decisions, and rationale. Higher level system traceability techniques are limited for tracing behavior
requirements must be allocated and traced to (DoD Software Technology Strategy 91).
component requirements and traced to test cases to Behavior is difficult to auce using current methods
make sure the system requirements are met. because current trace mechanisms link functions rather

364

than threads. Methods that link functions associate availability involve many system parts, creating
stimulus-response requirements with significantly large traceability problems.
system subsets or the entire system. The pervasive nature of most product attributes

Contractors should be tracing behavioral threads to indicates that it is not feasible to trace these attributes to
more detailed behavior, and associating this behavior the lowest level. To understand what must be traced,
with test cases that drive simulations, prototypes, and we need a defined process for specifying and verifying
implementations product attributes.

TRACING PRODUCT ATITRIBUTES CONCLUSIONS

Product attributes, are difficult to trace due to their When contractors say they perform requirements
pervasive nature. We discuss the difficulties for sveral management, they generally trace document
of these attributes, paragraphs, functions, test cases, and resource

Timing has numeric constraints and is associated utilization. This level of requirements management is
with normal and exceptional behavior paths that link minimal, compared to what is needed. Traceability
input to output. Timing can be traced if we solve the should be part of an overall process for require-
behavior tracing problem. The problem is that ments/design flowdown and verification. This process
stimulus-response paths include operating system calls, must indicate what should be defined, traced, inspected.
database accesses, network interaction, and man- modeled, tested, and analyzed.
machine interface functions, as well as application
functions. Timing is also dependent on resource BIBLIOGRAPHY
utilization, so degraded conditions must be considered.
vastly increasing the number of links. DoD Software Technology Strategy, prepared for

Efficiency is a function of required processing and Director of Defense Research and Engineering, Dec.
resource utilization. Reliability is mean time to failure 1991.
in operational use and is related to failure during test.
Availability is related to reliability and mean time to Dorfman, M., "System and Software Requirements
repair. These attributes are frequently associated with Engineering", in M.H. Thayer and M. Dorfinan. eds..
system components, but inter-component interfaces can System and Software Requirements Engineering.
affect the attribute. Tutorial, IEEE Computer Society Press. Los

Safe, survivable, and secure are rated by criticality Alamitos, CA, 1991. pp. 4-16.
level. Designers try to partition the system so that Finkelstein, A., "Tracing Back from Requirements",
"highly critical" applies to a small part of the system, lEE Colloquium on Tools and Techniques for
but this is difficult as we do not know how to create Maintaining Traceability During Design (Digest
impenetrable boundaries. Verifying that auributes are No. 180) Dec. 1991. pp. 7/1-7/2.
met is equivalent to proving that bad things cannot Ramesh, B., Abbott. A.G., Busch, M.R., and Edwards,
happen, which is difficult or impossible. Therefore, M., "An Initial Model of Requirements Traceability,
strict design and coding principles must be followed. An Empirical Study", Technical Report, Naval
and we must trace flowdown and verification so that Postgraduate School, Sept. 1992.
verifications can be repeated if a change occurs.

Fault tolerance is related to a pervasive philosophy Author's Biography: Stephanie White is Principal
(e.g., fail-operational/fail-safe, hot standby, compart- Engineer, Software Process. in Grumman's Corporate
mentalization) and to hardware and software design Research Center. where she researches system and
decisions. Tracing whether the fail-operational/fail-safe software requirements methods and leads an inter-
philosophy has been met is equivalent to inspecting all divisional team solving system/software engineering
design and implementation. It is difficult to test a interface issues. Her research interest is in modeling
system for fault tolerance, as we cannot introduce every and analyzing system behavior, and she is vice-chair of
kind of fault. Every test that results in a failure should the IEEE Computer Society CBSE Task Force.
be analyzed for additional fault tolerance requiremens Previous experience includes engineering and
causing iterative test. requirements, design, code, test management for aircraft and space programs, as well as
cycles. and iterative traces, college teaching. Stephanie has a BA and MS in

User-friendly is considered a characteristic of man- mathematics, and a PhD in computer science.
machine interfaces, including menus, screens, and on-
line help. It means the system is easy to learn, easy to
use, and pleasant to use. Processing and com-
munication delays, subsystem data availability and
diagnostic data availability affect user-friendliness
during operation and training. Delays and data

365

Distributed Design of Computer-Based Systems: Needed
Academic Programs

Dr. Julian Hloltzman
CECASE/University or Kansas

Abstract. This paper summarizes the portion of different organizations. To exchange data among such
the panel session on Distributed Design of Computer systems requires interfaces to describe content, mid
Based Systems devoted to a discussion of academic pmtocols to des-ribe formast.

programs. Some of the key elements identified by the The paper proceeds to identify critical issues and
CBSE Task Force for Distributed Design of Computer reports on the current state of the practice. For
Based Systems in both research and practice are briefly purposes of this panel, we summarize below some of
reviewed. Academic programs and some comments on tkr key issues pertinent to academic programs.
supporting research follow. The basic conclusion is CBSE is concerned with the following

that current teaching programs are inadequate in content responsiblities in addition to those of triion

and emphasis on the Systems Engineering aspects and & Design decisiows concerning the distributed
that university-based research, in general, lacks a focus nature of the CBS (its architecture).
on solving problems of significance to practitioners and • Allocation of resources to component devel-
rarely is 'scaleable" to real-world situations. opern and management of the coordinated process.

Allocation of functions and data to CBS

Introduction resources (processors. software. datastores. displays.
Hunmn Comnputer Interface).

The IEEE Task Force on Computer Based Systems * CBS strategies with respect to safety, security.
Engin"'ring has been meeting in workshop formats for and fault tolerance.
the past two-and-a-half years. Many key issues 0 Global system management strategy.thepas tw-an-a-alfyeas. anykeyisses Performance allocations (timing. sizing.

pertinent to the System Engineering of Computer Based avaiPabi(ity).
Systems am being identified and becoming the subject * Testing (component. integration. interoper-
of active working groups. Presently there arc six ability with the external environment).
working groups, including Process. Models, Tools. Longistics support (maintenance, training).
Education, Case Studies, and Research. * implementation of the CBS within the existing

The Education Working group has been reviewing environment (e.g.. bandwidth, memory size. 1/0
existing programs, with special emphasis on the issues subsystem, database system). system environment
and results arising from the other technical groups. The constraints (e.g.. operational environment, security

consensus has been that few academic programs measures), and performance thresholds (e.g..
provide the background for their graduates to perform timeliness. throughput, availability); that is. the mare

the functions of CBSE and that, in general, university- traditional Systems Engineering issues.

based research does not meet industry needs. Considerations from an Academic Perspective

Review of Some Key CDSE Issues A general observation at this point is that CBSE

In a paper to be published shortly in the IEEE education must be grounded in both Computer

Compute Journal. tde panel members (and some other Engineering and Computer Science but with a strong
from oun the group)have, state rs(d sthe following. emphasis on System Engineering issues. Review offrom the CESE group) have stated the following, some key academic programs in Computer Engineering!

The nature of CBSs requires a different systems in Not amic r amsi ofpte prog
engineering knowledge base than that normally in North America revealed that most or the program
required to engineer non-CBSs. All CBSs involve reflected the underpinnings of the normal Electrical
application software mad associated services that wre Engineering programs: e.g. communications, VLSI
conceptual in nature and inherentdy difficult to grasp. design, and so forth. Only in the last few years have
Requirements satisfied by software are frequently Computer Engineering programs begun to take on their
anbiguous and subjwet to change. This leads to design own identity.
changes that may sacrifice system architecture Computer Science programs also reflect the
flexibility to ensure performance requirements are emphasis of their origin rathar than the needs of the
met. Furdmhroe software changes in complex CBSs practitioners. Most are based on abstract mathemaical
can result in unpredictable behavior, both internal and
external to the CBS. The nature of distributed CBS(s) theory ad sres provability more than on what will
is unique in that CBS resources are frequently work. and see driven by the desire to produce people
geographiCaly dispersed and under the control of to write compilers.

366

Other CBSE related programs are extensions of master. There are proponents of an undergraduate
Industrial Engineering. Operations Research. and so program, in spite or the observation that it is highly
forth. Interestingly. thesc programs address some key unlikely that an individual four or five years out of high
systems engineering issues but lack the depth in the school will perform systems engineering work even at
background discipline areas needed for CBSE. the detail design level. A consensus seems to be

Undcrgraduatc programs commonly are greatly developing among the working group members that a
lacking in a systems engineering emphasis, or even hybrid undergraduate program concentrating on
flavor. The traditional departments, over the last twenty discipline fundamentals with a strong emphasis on true
or thirty years. have erected almost insurmountable design principles, addressing many of the issues raised
barriers between themselves at the same time these above, is the desired course of action. A very early
barriers are breaking down in industry. Specialties are draft of a model program will be given during the panel
dropped in one department and picked up by another discussion.
(e.g.. control theory from EE to Aerospace) rather than There is general agreement between NCOSE
being shared by interdisciplinary groups of interested members and CBSE Task Force members that an
parties. Nonetheless. it is important to address the identifiable Systems Engineering program at the
complex system engineering issues in all disciplines: graduate level is a necessity. Both organizations have
and it may require courses labeled "Systems working groups addressing this problem. During the
Engineering for XX" to meet the current acaacmic panel session; we will present a preliminary draft of a
cultural environment. Master's level program for CBSE with two tracks: one

Most undergraduate programs concentrate on what predominantly technical with a strong emphasis on
can be termed grading by artifact. That is, very little formal methods, and the second with a strong flavor of
attention is given the method used in obtaining a management. The reality of program duration
solution; rather, we grade the specific answer. Thus it constraints suggests two tracks, even though a single
should not be a surprise that graduates of such programs track with elements of each would be more desirable.
do not understand the process of problem solving but There are several extremely serious issues that must
are specialists in very narrow particular solution be addressed beyond the technical content of academic
methods. Moreover, little attention is given to seeking programs. The research content and nature of graduate
and evaluating alternate solutions. Optimization is programs requires dcfinition and support. The source
rarely examined, and certainly even more rarely is of faculty with the appropriate CBSE expertise is of
system optimization considered. Of special concern to concern. It is most likely that participation by industry
a CBSE program is the concentration on multiple small will be required. Some of the cultural aspects have
problems that are presented to the students. They do been discussed above. A publication from the National
not usually have many. or good. experiences in large. Research Council outlining the need for a resurgence in
team-oriented projects--projects that would be both research and teaching in design observed that
representative of a CBS. universities tend to. first, deny there is a problem and.

There is little exposure to. and experience in, micro- second, state that it is impossible to change. NCOSE
economics. Instead, a single course in macrocconomics and the Task Force, in partnership with academia, have
is included in most programs. It is little wonder, then, a significant cffort in front of them.
that engineers and systems engineers find themselves
the "victims" of cost effectiveness analyses rather than
Z:ing in charge of them.

Traditional university research is focused on publi- Author's Biography
cations in refereed journals-many of them, and rapidly.
Since both the tenure and promotion considerations Dr. Holtzman is a Professor at the University of
hinge on publications, concentration on industrial Kansas and is Director of KTEC's Center for
strength and industry.pcrtincnt research is not presenL Excellence in Computer Aided Systems Engineering.
Typically. a research problem is selected that will yield He has over 33 years of experience in higher education
publishable results without much concern as to the and in the private sector. He has worked as a member
realism of the simplifying assumptions. Results of the of the technical staff at Hughes Aircraft, rising to the
research are rarely tested against real benchmarks. As rank of senior research scientist while at Lockheed
in the design of courses. the problems selected are Missiles and Space Corporation, and has served as
usually of small size. Scaling to commercial-sized Chairman of the Electrical and Computer Engineering
problems is almost never done. DepartmenL Dr. Holtzman has authored or been a co-

author on 90 papers. He has had approximately seven
Recommendations million dollars in sponsored research as Principal

Investigator. Dr. Holtzman's current research is in
A fundamental issue the CBSE Education Working Systems Engineering focusing on Tool Integration,

Group is debating is the level: i.e.. undergraduate versus Software Reuse. and Enterprise Modeling.

367

Distributed Design of Computer Based Systems:
Methodology

David W. Oliver
GE Corporate Research and Development

P.O. Box 8, Bldg. K-I, Room 3C3
Schenectady, N.Y. 12301

AbstracL The distributed design of computer based together upon integration. This requires the careful mod-
systems requires a methodology that supports both the eling of threads through the system as shown in Figure 1.
modeling of the distributed system and the ability to as- The threads can be threads of control which may or
sess the impact of requirements and engineering change may not involve people in the loop. The threads may be
while the system is at any stage of development. Model stimulus response threads which may or may not involve
Based Systems Engineering, MBSE. provides an ap- people in the thread. These threads pass through many
proach to these twined problems with the advantages of layers and components of the system and it is the system
tailorability to application, culture, notations, and tools. responsiveness that is critical. There may be several in-
It is critical that traceability linkages be constructed in dependent threads which can occur randomly in tme and
the normal course of engineering development and that can interfere under special occurrence conditions. It is

t critical that such situations be modeled and that simulta-

neous need for the same resource be prevented. The use
Modeling of Distriof bus structures, complex queues, and distributed data
Modellfng Of Distributed Systems storage must be carefully evaluated.

The systems modeling of large distributed systems is Thread analysis begins at context level by thoroughly
done in tiers, beginning at context level and continuing modeling the behavior of the external components or en-
to a separation tier where hardware, software, the tasks tities in the environment. A methodology, MBSE, has
of people, and facilities can be separated and specified been described for accomplishing this, (Oliver 1993a),
independently. The systems modeling must assure that (Oliver 1993b), (Oliver 1993c), in a manner that is tai-
the implementations from all these disciplines will work lorable to different representations of the information,

response thread

Humans
Sensing, Comrn tion, Connection, Memory, De0ision, ActuationI[•HMI Devices .00X

SI IC_ puter ware/S re' , Net rk I
4-

C nocontrol

thread

Figure 1. Critical threads through a system which has been fully decomposed
to separate software, hardware, and operator components

368

different notations and different tools. The seven core en- tract N60921-92-C-0206. The author thanks Philip Q.
gineering steps and their application to tiers of decompo- Hwang and Jonah Lavi for encouragement and support.
sition is shown in Figure 2.

These models capture behavior, what a component References
does, and are called Conceptual or What Models. The (Oliver 1993a) Oliver, David W., "A Tailorable Pro-
models are executable. They link, for traceability, to th cess Model for CBSE",nterim Contract Report, Engi-
Operations Concept documents. As the behavior of the neering of Complex Systems. Contract N60921-92-C-
system is modeled in a hierarchy of increasing detail, 0206, U.S. Navy, NSWC
What Models in the same executable notation are devel-
oped at each tier. The external behaviors are linked to the (Oliver 1993b) Oliver, David W., "Descriptions of Sys-
system behavior and executed together. This process tems Engineering Methodologies and Comparisons of

Iterate Over all Tiers

6. Iterate to Find a Feasible Solution

2.

DefineEf5fCtlvenessI measures I

3. /No Feasible
Create r u c i.n Solution

Tetraa s aWhat of Oea vid W I"Autoate
i B d aModel 7b Syste Ait s

i n-,stot ae S eentialnlt ormaon 4. l I-aly uos Build ogTest Planh

Figure 2. Systems Engineering, Coren Steps

drives is and time lines through the entire system to Information Representations.", NCOSE, July 1993d
assess resource conflicts. Washington, D.C.

The thread analysis also supports the development of (Oliver 1993c) Oliver, David W. "Automated Optimi-
the Sequential Build and Test Plan, step 7. Issues can be zation of systems Architectures for Performance.".
raised at any point of development and the issue deHscrip- NCOSE, July 1993, Washington, D.C.
tions link to the associated entities in the models. Reso-
lution of the issues is recorded and linked similarly. In- Author's Biography
ferent in the method are trade-off and optimization. Hee has manaed GE-CRD te liaisobehavior of all components must be modeled Data storet tm innotation is not adequate Requests to operating systems,a ortry o ar ut d

busiswr wanDMs suppote byte Navale Sufac Wr are quality ftiryto er. He is acrauteorreannITwthy a hd.ein

en E n g o C oplex soping Systems Engineering methodology and tools,
Information models, How Models, have been de- adding optimization and object-oriented methods forscribed. (Oliver 1993a), for each of the seven core engi- large systems which may be real-time and distributed.

neering steps. They show the relationships among all the He led the development of the Teamwork Arda CASE
entities in the models. Under the sponsorship of the IEEE tool. and a X-Ray tomographic inspection system for
Task Force on Computer Based Systems Engineering the turbine blades. He has contributed to medical real-time
core steps and their information models are being scruti- ultrasonic diagnostic systems, eddy current imaging,
nized by Systems Engineering groups around the world and high temperature crystal growth and material pro-
for correctness and completeness. cessing. He has managed GE-CRD technical liaison

Ackno ledg entswith all the GE departments and the CRD Automation
Ackno ledg entsand Control Laboratory for factory automation and

'Ibis work was supported by the Naval Surface Warfare quality. He is a graduate of VPI and MIT with a Ph.D. in
Center, Engineering of Complex Systems (ECS), Con- physics 1961.

369

Distributed Design of Computer-Based System
Davi G. Owens

6111. avenue Royalmount
Montreal Canada PQ HNP 1 K6

This paper uses a drawing tool, a spread sheet, to support the spread sheet model. This simple
and functional strings, to support high level allocation of known or desired information put
analysis of a conceptual systen. By providing the into an operational (time based) string allows
data required and investigating suspicious areas, high level accounting practices to be used to keep
the Systems Engineer can minimize the number the books on a percentage capability used bases.
of surprises that occur later in the These strings can be parallel or serial
developmental process. The same spread sheet operations. The strings can have bounded
information can be built on to assess and present Interactions showing communication or
the difference in cost and performance compared constraints. The details of the operations can be
to a baseline, at a high level (see Figure 1.), and the dynamics

need only include best and worst case
Simple mistakes are the most embarrassing. performance estimates. Interactions through
When a system's function and interfaces are physical communication channels include needed
defined in a static structure, it is often volume and rate estimates with best and worst
discovered that it could not perform the case limits.
minimum operations dynamically. When
discovered in an early stage of the design, the The view of a simple system (Figure 1) can be
problem rmay be easy to correct, but, it was still deceptive. The following example points out how
embarrassing to get caught by a design oversight, easy it is to assemble a set of operations and

tolerances and match them with implementation
The purpose of this short paper is to offer a capability and constraints. Then one carl perform
method to define and analize a static view of a a top level "does it fit?" analysis. The Model is
functional allocation. This is done by looking at easy to implement with spread sheet tools such
estimates of the best case and worse case as Excel or Lotus.
dynamic limits of the allocated system, which
allows an understanding of the functional In
operation within a given set of system In
constraints. Performing this analysis in a
complex system requires the use of an
accounting system that is as simple as the pencil
but has the power of the computer. A spread A E G
sheet program fits the bill. This is done using a
top level equation: ef h

Dynamic- Capability_" USED = K

%] I OI -used - per_ function ± tollerences B

X%CPU_ used--per- function + E tollerences

+

Re serve

When this equation and the spread sheet become D
ineffective, move the analysis to a data base or Out
systems engineering design/analysis tool. N

A technique used to identify and isolate strings of Defined Operations
linked computation used by models of high and Allocated Structure
performance computer systems is recommended

370 Figure 1.

How should the model work? All good models are Assuming equal distribution between A & B, node
assembled to answer the specific questions of the F is loaded to 60 %. If A uses its secondary
operation and performance within the string 50% of the time, the load on F jumps to
constraints of the proposed implementation. This 90% load. If the loading distributions are not
model will be analyzed for bottle necks and normal then there is likely an intermittent
performance tolerances. It could also answer problem with the systems operation. Using the
questions about allocation of maximum or statistical package within the spread sheet
minimum performance or many other numeric allows the generation of a complete set of data on
data, such as errors or allocated reliability, this potential bottleneck.
Once the model is created (defined), simple
statistical or numerical analysis techniques 4 Process Strings
built into spread sheets can be used to automate
and display the data. A graphical representation
with the spread sheet's numbers helps provide In
consistency of the model at the level of detail
included.

The following example uses a top level I
description of a process to perform an
operational constraints analysis. The system is
defined by Figure 1. The flow through the system ef h
uses ab, I, K, 0, gh, Q, ef L, M, N, & P,
communication paths through 9 processes to
finally get to the output.

Est nwe-6f- Dynamic- Capability- USED =

Xlnpx_used-40%±10%

X Process used - 60% ± 20%

XOurpu- used -70% ± 20

Required_ Reserve - 10% Out

Esuimaed_ Confidence_ evel - 95% N

This model has more than 81 potential states of Defined Operations
operation. The allocated processes and and Allocated Structure
communications could require a significant Figure 2.
effort to completely define or simulate. Using String analysis uses a set of heuristics to group,
Excel's r function, if there is a skew between classify and analyize static and dynamic state
the estimates and the operational data, the space at a high level. The technique does not

margin is about 18% and is still safe. require assumptions to be atomic at any level.
Lower level detailed interactions and constraints

Figure 2. This model depicts a more detailed are included in the top system description onlyFigue 2.Thismode depctswhen necessary. The analysis moves to Petri
description of the system with normal processes Nens or compiete T h as mDD o Pete
defined. The string analogy shows processes and Ne ete tools such as RDD or State Mate
how they are allocated resources and as the information and precision increases.

communications by stringing a series of
functions that would be followed in the systems
normal operation. The two normal strings are:
A -'IN-A-ab-B-K-F-P-X-Out"; and B= "IN-
A-I-E-ef-F-P-X-Out". Both Normal threads
have error correcting strings "L-C-M-D-N-
B-K-F' and "0-G-gh-h-Q-E" that add
:omplexity to the allocating processes to nodes
3-E & F. The effect of these two looped back
trings can be analyzed using the spread sheet.

371

Abstract. This paper introduces a method
of modeling that uses spread sheet tools to
support the analysis of high level function

and performance allocations early In the
design. The thrust of this short paper is In
support of the Computer Based Systems
Engineering Panel discussion of the need
for modeling during system design.

372

I
I

Panel Description: Computer Security Tradeoffs

Catherine Meadows
Code 5543

Naval Research Laboratory
Washington DC, 20375

In this panel we propose to consider tradeoffs between system security and other
critical system requirements, where by system security we mean the maintenance of data
confidentiality and integrity in the face of hostile intruders who are actively trying to sub-
vert the security policy. In the past, security was usually identified with confidentiality,
and it was usually considered more or less in isolation from other system properties, par-
ticularly in the DoD. That is, the main function of a secure system was to be secure;
other properties were usually secondary. Such an approach was adequate when it was
applied to the problem of protecting data in stand-alone operating systems that had no
other critical requirements and were not part of any larger system. But now we arm see-
ing the need for for more complex systems with other requirements as critical as security,
including availability, reliability, and timing constraints. It is these kinds of features that
are often most in conflict with security requirements. Guaranteeing secrecy may mean
making both the data and the system less available. Requiring that the system not
operate in certain insecure modes may make it less reliable. Finally, the time involved in
enforcing secrecy and integrity constraints may negatively affect performance, both
because of the time involved in checking the constraints, and because the restriction of
information flow to secure channels may prevent information from being processed in the
fastest and most convenient way.

In order to build a system in which various critical properties can be guaranteed to
an acceptable degree, it is necessary to understand the tradeoffs between security and the
other properties. In this panel we are gathering together researchers who are working on
computer security as it affects various other possibly critical properties of a system We
plan to consider the following questions:

[1] What effect does enforcing security requirements have on a system's ability to meet
other requirements, such as reliability, availability, and real-time requirements? In
particular, what kinds of security requirements are in direct conflict with other sys-
tems requirements, and what kinds can be seen as working together with other sys-
tems requirements? For example, in what ways is a secure system more or less reli-
able, and in what ways is a reliable system more or less secure?

[21 Are there aspects of security (e.g., covert channel rates) that can be easily quantified
and compared with other quantifiable requirements? What aspects can not be so
easily quantified? What can we done to make them more quantifiable?

373

[3] Are there techniques from security that can be helpful in assuring that a system
meets its other requirements, or vice versa?

[4] If a system must meet other requirements such as dependability, etc., are there any
kinds of security requirements that it is more likely to have? What information

"from systems development is most likely to give us an answer to this question?

[5] Does one need to think of security in a different kind of way when thinking of it in
conjunction with other system requirements? In particular, does one need a different
way of developing and defining security policies?

[6] Properties not usually associated with security (e.g., timing or reliability) may also
be considered security properties when they must be maintained in face of hostile
attack. How does this change the way we think about them, and how does it change
the way we think about security? Finally, how does thinking of these properties in
this way affect the tradeoffs?

[How compatible with other system objectives are the assurance techniques used in
computer security? How are assurance problems addressed in other, related com-
munities?

Proposed Panelists:

Catherine Meadows, NRL, chair
Marshall Abrams, MITE
Teresa Lunt, SRI
Carl Landwehr, NRL

374

APPENDIX A

LIST OF PANELS

RESEARCH AND TECHNOLOGY VISION PANEL
Chair: Phillip Q. Hwang
Members: Bruce Blum, David Owens, Gary Koob, Evan Lock

COMPUTER SECURITY TRADE-OFF PANEL
Chair: Cathy Meadows
Members: Marshall Abrams, Teresa Lunt, Carl Landwehr

COMPUTER BASED SYSTEM ENGINEERING (CBSE) ISSUES AND DIRECTIONS
PANEL
Chair: Dave Oliver
Members: Phil Hwang, Stephanie White, David Owens, Nick
Karangelen

SYSTEM INTEGRATION PANEL
Chair: Evan Lock
Members: Nick Karangelen, Kane Kim, Robert Goettge, Osman Balci,
Norman Scheidewind

REQUIREMENTS AND TRACEABILITY PANEL
Chair: Stephanie White
Members: Ralph Jeffords, Richard Evans, Luke Campbell, Dan
Mostert, Dave Bergstein

A-1

I
I
I

APPENDIX B

I LIST OF ATTENDEES

I
I
I

I

B-i

MARSHALL ABRAMS MACK ALFORD ED ANDERT

MIS: Z202 M/S: M/S:

MITRE ASCENT LOGIC CORP CONCEPTUAL SOFTWARE SYSTEMS

7525 COLSHIRE DR 10 ROSE ORCHARD WAY STE 200 P 0 BOX 727
MCLEAN VA 22102- SAN JOSE CA 95134- YORBA UNDA CA 92686-0727

PHONE: (703)883-6938 PHONE: (408)943-0630 PHONE: (714)996-2935
FAX: (703)883-1397 FAX: (408)943-0705 FAX: (714)572-1950
EMAILW ABRAMS@MITRE.ORG EMAIL: ALFORDOALC.COM EMAIL: ANDERT#ORION.OAC.UCI.EDU

ANNETTE ASHTON OSMAN BALCI SHERRY BARKER
M/S: CODE KS2 M/S: DEPARTMENT OF CS MIS: CODE B4O
NSWCDD VIRGINIA TECH NSWCOD

DAHLGREN VA 22448-5000 BLACKSBURG VA 24061-0106 DAHLGREN VA 22448-5000
PHONE: (703)663-7927 PHONE: (703)231-4841 PHONE: (703)663-7378
FAX. FAX: (703)231-6075 FAX:
EMAIL: AASHTON@RELAY.NSWC.NAVY.MIL EMAIL: BALCI@VTOPUS.CS.VT.EDU EMAIL:

DAVID BERGSTEIN BRUCE BLUM DAVID BRITTON
MIS: CODE N51 M/S: M/S:
NSWCDD JHU/APL TRIDENT SYSTEMS INC
10901 NEW HAMPSHIRE AVE JOHNS HOPKINS RD 10201 LEE HWY STE 300
SILVER SPRING MD 20903-5640 LAUREL MD 20723-6099 FAIRFAX VA 22030-
PHONE: (301)394-2770 PHONE: (301)953-6235 PHONE: (703)691-7792
FAX: (301)394-4130 FAX: (301)953-6904 FAX: (703)273-6608
EMAIL: DBERGST@NSWC.NAVY.MIL EMAIL: BIB@APLCOMM.JHUAPL.EDU EMAIL:

JOHN BURCH LUKE CAMPBELL JOSEPH CHIARA
M/S: M/S: BLDG 2035 SY30 M/S: MTE
AEPCO NAWC-AD/PAX AF SPACE AND MISSILES CEN
15800 CRABBS BRANCH WAY STE 300 LAAFB
ROCKVILLE MD 20855- PAX RIVER MD 20670- LOS ANGELES CA 90009-
PHONE: 1301)670-6770 PHONE: (301)826-7601 PHONE: (310)363-3521
FAX: (301)670-9884 FAX: (301)826-7607 FAX: (310)363-0265
EMAIL- EMAIL: LCAMPBELOTECNET1.JCTE.JCS.MIL EMAIL: CHIARA@MT2.LAAFB.AF.MIL

DONG CHOI THOMAS C. CHOINSKI DANIEL DAYTON
M/S: BOX 0191 M/S: CODE 2151 M/S:
UNIVERSITY OF PENNSYLVANIA NUWCDET JRS RESEARCH LABS
3650 CHESTNUT ST BUILDING 80 1036 W TAFT AVE
PHILADELPHIA PA 19104-6107 NEW LONDON CT 06320- ORANGE CA 92665-4121
PHONE. (215)573-4503 PHONE: (203)440-5391 PHONE: (714)974-2201
FAX: FAX: (203)440-5243 FAX: (714)974-2540
EMAIL- EMAIL: EMAIL: DAN@JRS.COM

WILLIAM DUDZIK MICHAEL EDWARDS WILLIAM EVANCO
M/S: M/S: CODE B40 M/S: M/S Z385
AST INC NSWCDD MITRE CORP
5113 LEESBURG PK STE 514 10901 NEW HAMPSHIRE AVE 7525 COLSHIRE DR
FALLS CHURCH VA 22305- SILVER SPRING MD 20903-5640 MCLEAN VA 22102-3481
PHONE: (703)845-0040 PHONE: (301)394-4187 PHONE: (703)883-6102
FAX: (703)845-0042 FAX: (301)394-1175 FAX: (703)883-5787
EMAIL, EMAIL: MEDWARD@NSWC-WO.NAVY.MIL EMAIL: EVANCO@MITRE.ORG

B-2

RICHARD EVANS WILLIAM FARR JAMES FRANCIS

M/S: ST II RM133 MIS: CODE 810 M/S:

GEORGE MASON UNIVERSITY NSWCDD STRATEGIC INSIGHT LTD

4400 UNIVERSITY DR 2011 CRYSTAL DR STE 101

FAIRFAX VA 22030-4444 DAHLGREN VA 22448-5000 ARUNGTON VA 22202-

PHONE: (703)993-3724 PHONE: (703)663-8388 PHONE: (703)553-9700

FAX: (703)993-1521 FAX: (703)663-4568 FAX: (703)553-9665
EMAIL REVANSOGMUVAX2.GMU.EDU EMAIL: WFARR@S85O.MWC.EOU EMAIL:

ARMEN GABRIEUAN DENNIS GARROOD JOSEPH GERSTNER

M/S: M/S: MIS:
UNIVIEW SYSTEMS ALLIANT TECHSYSTEMS INC XRF

1192 ELENA PRIVADA 6500 HARBOUR HEIGHTS PKWY 3370 GREENSBORO DR. 919
MOUNTAIN VIEW CA 94040- EVERETT WA 98275- MCLEAN VA 22102-
PHONE: (415)968-3476 PHONE: (2061356-3293 PHONE: (703)442-9020
FAX: (415)968-3476 FAX: (206)356-3185 FAX: (703)442-9020
EMAIL: ARMEN@WELL.SF.CA.US EMAIL: EMAIL: JGERST@CS.GMU.EDU

ROBERT GOETTGE JEFFERY GRADY ROBERT HALLIGAN

MIS: MIS: SPACE SYSTEMS DIVISION M/S:
AST INC GENERAL DYNAMICS TECHNOLOGY AUSTRALASIA PTY LTD
12200 E. BRIARWOOD AVE. STE 260 601S CHARAE ST 1010 DONCASTER RD
ENGLEWOOD CO 80112- SAN DIEGO CA 92122- DONCASTER E VIC AUSTRALIA 3109
PHONE: (303)790-4242 PHONE: (619)547-7108 PHONE: 61.3.841.9733
FAX: (303)790-2816 FAX: (619)974-4000 FAX: 61.3.841.8374
EMAIL' EMAIL: EMAIL:

STEVE HARRISON ROGER HILLSON NGOCDUNG HOANG
M/S: CODE 2153 M/S: CODE 5583 MIS: CODE 840
NUWCDET NAVAL RESEARCH LABORATORY NSWCDD

4555 OVERLOOK AVE SW 10901 NEW HAMPSHIRE AVE

NEW LONDON CT 06320- WASHINGTON DC 20375-5337 SILVER SPRING MD 20903-5640
PHONE: (203)440-6153 PHONE: (202)404-7332 PHONE: (301)394-4877
FAX: (203)440-5987 FAX: (202)767-1122 FAX: (301)394-1175
EMAIL: HARRISONSJ@NUSC.NAVYMIL EMAIL: HILLSON@AIT.NRL.NAVY.MIL EMAIL: NHOANG@NSWC-WO.NAVY.MIL

JULIAN HOLTZMAN STEVEN HOWELL MICHELLE HUGUE
MIS: CE/CASE MIS: CODE 840 MIS: AEROSPACE TECHNOLOGY CENT
UNIVERSITY OF KANSAS NSWCDD ALLIED-SIGNAL AEROSPACE CO
2291 IRVING HILL RD NICHOLS HALL 10901 NEW HAMPSHIRE AVE. 9140 OLD ANNAPOLIS RD
LAWRENCE KS 66045- SILVER SPRING MD 20903-5640 COLUMBIA MD 21045-
PHONE: (913)864-7759 PHONE: (301)394-3987 PHONE: (410)964-4158
FAX: (913)864-7789 FAX: (301)394-1175 FAX: (410)992-5813
EMAIL- HOLTZMAN@KUHAB.CC.UKANS.EDU EMAIL: SHOWELL@NSWC-WO.NAVY.MIL EMAIL: MMH@BATC.ALLIED.COM

PHILIP HWANG FARNAM JAHANIAN RALPH JEFFORDS
MIS: CODE A-10 MIS: MS H2-B22 MIS: CODE 5546
DMA HO(TIS) IBM RESEARCH NAVAL RESEARCH LABORATORY
8613 LEE HWY P.O. BOX 704 4555 OVERLOOK AVE SW
FAIRFAX VA 22031-2137 YORKTOWN HEIGHTS NY 10598- WASHINGTON DC 20375-5000
PHONE. (703)285-9236 PHONE: (914)784-7498 PHONE: (202)404-8493
FAX: (7031285-9396 FAX: (914)784-7455 FAX: (202)404-7942
EMAIL- POHWANG@CS.UMD.EDU EMAIL: FARNAMOWATSON.IBM.COM EMAIL: JEFFORDS@ITD.NRL.NAVY.MIL

B-3

DAVID JENNINGS ALLEN JOHNSON NICHOLAS KARANGELEN
MIS: CODE K51 MIS: M/S:
NSWCDD RAINBOW SYSTEMS ANALYSIS GRP TRIDENT SYSTEMS INCORPORATED

8920 BUSINESS PARK DR 10201 LEE HWY SUITE 300
DAHLGREN VA 22448- AUSTIN TX 78759- FAIRFAX VA 22030-
PHONE: (703)663-8157 PHONE: (512)346-7999 PHONE: (703)273-1012
FAX: (703)663-4568 FAX: (512)794-9997 FAX: (703)273-6608
EMAIL- DJENNINORELAY.NSWC.NAVY.MIL EMAIL: EMAIL: NKARANG@NSWC-WO.NAVY.MIL

JEE-IN KIM KANE KIM GARY KOOB
M/S: M/S: DEPARTMENT OF E/CE M/S: CODE 3332
COMPUTER COMMAND AND CONTROL UNIVERSITY OF CALIFORNIA OFFICE OF CNR
2300 CHESTNUT ST STE 230 800 N OUNICY ST
PHILADELPHIA PA 19103- IRVINE CA 92717- ARLINGTON VA 22217-5660
PHONE: (215)854-055S PHONE: (714)856-5542 PHONE: (703)696-0872
FAX: (215)854-0665 FAX: (714)856-4076 FAX:
EMAIL- KIM@CCCC.COM EMAIL: KANE@BALBOA.ENG.UCI.EDU OR EMAIL:

KANE@ICS.UCI

NAOUFEL KRAIEM BRUCE LABAW CARL LANDWEHR
M/S: MASI/CRI M/S: CODE 5546 MIS: CODE 5542
UNIVERSITY OF PARIS I NAVAL RESEARCH LABORATORY NAVAL RESEARCH LABORATORY
17 RUE DE TOLBIAC 4555 OVERLOOK AVE SW 4555 OVERLOOK AVE SW
PARIS FRANCE 75013- WASHINGTON DC 20375- WASHINGTON DC 20375-
PHONE: 44.24.93.65 PHONE: 1202)767-3249 PHONE: (202)767-3381
FAX: 45.86.76.66 FAX: (202)404-7942 FAX: (202)404-7942
EMAIL NAOUFEL@MASI.IBP.FR EMAIL: LABAW@ITD.NRL.NAVY.MIL EMAIL: LANDWEHR@ITD.NRL.NAVY.MIL

SI IE KWEI-JAY LIN JANE W.S. LIU
MIS: COW,' Nsl MIS: DEPARTMENT OF ECE M/S: DEPARTMENT OF CS
NSWCD.,) UNIVERSITY OF CALIFORNIA UNIVERSITY OF ILLINOIS
10901 ,dEW HAMPSHIRE AVE 1304 W. SPRINGFIELD AVENUE
SILVER SPRING MD 20903-5640 IRVINE CA 92717- URBANA IL 61801-
PHONE: (301)394-1971 PHONE: (714)856-7839 PHONE: (217)333-0135
FAX: (301)394-4130 FAX: (714)725-3203 FAX: (217)333-3501
EMAIL SLE@NSWC-WO.NAVY.MIL EMAIL: KLIN@UCI.EDU EMAIL: JANELIU@CS.UIUC.EDU

EVAN LOCK TERESA LUNT W.L. MCCOY
M/S: M/S: EL245 MIS: CODE B10
COMPUTER COMMAND AND CONTROL SRI INTERNATIONAL NSWCDD
2300 CHESTNUT ST STE 230 333 RAVENSWOOD AVE
PHILADELPHIA PA 19103- MENLO PARK CA 94025- DAHLGREN VA 22448-5000
PHONE: (215)854-0555 PHONE: (415)859-6106 PHONE: (703)663-8367
FAX: (215)854-0665 FAX: (415)859-2844 FAX: (703)663-4568
EMAIL LOCK@CCCC.COM EMAIL: LUNT@CSI.SRI.COM EMAIL:

CATHERINE MEADOWS JEFFREY MILLER DANIEL MOSTERT
M/S: CODE 5543 M/S: M/S: DEPARTMENT FOR CS
NAVAL RESEARCH LABORATORY SOHAR INC RAND AFRIKAANS UNIVERSITY
4555 OVERLOOK AVE SW 133 ROLLINS AVE STE SB P. 0. BOX 524
WASHINGTON DC DC 20375- ROCKVILLE MD 20852- JOHANNESBURG S AFRIC 2000-
PHONE: (202)767-3490 PHONE: (301)230-5654 PHONE: 27.11.4892847
FAX: (202)404-7942 FAX: (703)734-6119 FAX: 27.11.4892138
EMAIL MEADOWS@ITD.NRL.NAVY.MIL EMAIL: EMAIL: BASIE@RKW.RAU.AC.ZA

B-4

GILBERT MYERS JOHN NALLON SWAMINATHAN NATARAJAN
M/S: CODE 41 M/S: MS 8404 M/S: DEPARTMENT OF CS
NRAD TEXAS INSTRUMENTS TEXAS A&M UNIVERSITY
271 CATALINA BLVD 6500 CHASE OAKS BLVD
SAN DIEGO CA 92152-5000 PLANO TX 75023- COLLEGE STATION TX 77343-3112
PHONE: (619)553-4136 PHONE: (214)575-3450 PHONE: (409)845-8287
FAX: (619)553- FAX: 1214)575-5847 FAX: 1409)847-8578
EMAIL: GMYERS@NOSC.MIL EMAIL: NALLON@DDD.ITG.TI.COM EMAIL: SWAMI@CS.TAMU.EDU

DAVID OLIVER DANIEL ORGAN DAVID OWENS
M/S: M/S: CODE 2151 M/S:
GE CORPORATE R&D CTR NUWCDET PARAMAX SYSTEMS CANADA
P.O. BOX 8 BUILDING 80 6111 AVENUE ROYALMOUNT
SCHENECTADY NY 12301- NEW LONDON CT 06320- MONTREAL QE H4P 1K6
PHONE: (518)387-6458 PHONE: (203)440-6546 PHONE: (514)340-7031
FAX: (518)387-6104 FAX: 1203)440-5243 FAX: (514)340-8318
EMAIL OUVERDW@CRD.GE.COM EMAIL: EMAIL:

MOHSEN PAZIRANDEH DAR-TZEN PENG PARAMESWARAN RAMANATHAN
M/S: MI/S: M/S: DEPARTMENT OF E/CE
INNOVATIVE RESEARCH INC. ALLIED-SIGNAL MTC UNIVERSITY OF WISCONSIN
180 COOK ST STE 315 9140 OLD ANNAPOLIS RD 1415 JOHNSON DR
DENVER CO 80206- COLUMBIA MD 21045-1998 MADISON WI 53706-1691
PHONE: (303)3214955 PHONE: (301)964-4195 PHONE: (608)263-0557
FAX: FAX: (301)992-5813 FAX: (608)262-1267
EMAIL MOHSEN@CS.COLORADO.EDU EMAIL: DTP@BATC.ALLIED.COM EMAIL: PARMESH@ECE.WISC.EDU

BALA RAMESH JOHN REILLY CHARLES ROBERTSON
M/S: CODE AS/RA MIS: CODE K54 MIS: ENGINEERING SUPPORT
NAVAL POSTGRADUATE SCHOOL NSWCDD AUTOMATED SCIENCES GROUP INC.

P.O. BOX 1750
MONTEREY CA 93943- DAHLGREN VA 22448- DAHLGREN VA 22448-
PHONE: (408)656-2439 PHONE: (703)663-7257 PHONE: (703)663-5231
FAX: (408)656-3407 FAX: (703)663-4568 FAX: (703)663-3717
EMAIL, RAMESH@NPS.NAVY.MIL EMAIL: EMAIL:

ANDRES RUDMIK JOHN RUMBUT CHARLES SADEK
MIS: M/S: CODE 2222 M/S: CODE 840
SPS INC NUWC NSWCDD
122 N 4TH AVE BLDG. 1171-3 10901 NEW HAMPSHIRE AVE
INDIALANTIC FL 32903- NEWPORT RI 02841-2047 SILVER SPRING MD 20903-5640
PHONE: (407)984-3370 PHONE: (401)841-3616 PHONE: (301)394-5187
FAX: (407)728-3957 FAX: (401)841- FAX:
EMAIL AXR@SPS.COM EMAIL: RUMBUT@ADA.NPT.NUWC.NAVY.MIL EMAIL:

RAJIV SAIN SAUMYA SANYAL RICHARD SCALZO
M/S: M/S: M155 M/S: CODE A1O
AUTOMATED SCIENCES GRP FMC NSWCDD
16349 DAHLGREN RD 4800 E RIVER RD 10901 NEW HAMPSHIRE AVE
DAHLGREN VA 22448- MINNEAPOLIS MN 55421- SILVER SPRING MD 20903-5640
PHONE: (703)663-9231 PHONE: (612)572-7577 PHONE: (301)394-2926
FAX: (703)663-3717 FAX: (612)572-4991 FAX: (301)394-1164
EMAIL EMAIL: SANYALSK@NSD.FMC.COM EMAIL: RSCALZO@NSWC-WO.NAVY.MIL

B-5

!

CARL SCHMIEDEKAMP NORMAN SCHNEIDEWIND KANG SHIN
M/S: CODE 7033 M/S: CODE AS/SS M/S: DEPARTMENT OF EE/CS
NAWC-AD NAVAL POSTGRADUATE SCHOOL UNIVERSITY OF MICHIGAN

P.O. BOX 5152
WARMINSTER PA 18974-0591 MONTEREY CA 93943- ANN ARBOR MI 48109-2122
PHONE: (215)441-1779 PHONE: (408)656-2719 PHONE: (313)763-0391
FAX: (215)441-3225 FAX: (408)656-3407 FAX: (313)763-4617
EMAIL: CARLS@NADC.NAVY.MIL EMAIL: SCHNEIDEWINDONPS.NAVY.MIL EMAIL: KGSHIN@EECS.UMICH.EDU

JAMES SMITH SANG SON ALEXANDER STOYENKO
M/S: MI/S: DEPARTMENT OF CS M/S: DEPARTMENT OF CAiS
OFFICE OF THE CNR UNIVERSITY OF VIRGINIA NEW JERSEY INSTITUTE OF TECH
800 N OUNICY ST THORNTON HALL UNIVERSITY HTS
ARLINGTON VA 22217-5000 CHARLOTTESVILLE VA 22903- NEWARK NJ 07102-
PHONE: (703)696-5752 PHONE: (804)982-2205 PHONE: (201)596-5765
FAX: (703)696-1330 FAX: (804)982-2214 FAX: (201)596-5777
EMAIL: JGSMITH@ITD.NRL.NAVY.MIL EMAIL: SON@VIRGINIA.EDU EMAIL: ALEXOVULCAN.NJIT.EDU

JAY STROSNIDER HAROLD SZU MARY TAMUCCI
M/S: DEPARTMENT OF E/CE M/S: CODE R44 M/S:
CARNEGIE MELLON UNIVERSITY NSWCDD MYSTECH ASSOCIATES INC.
5000 FORBES AVE 10901 NEW HAMPSHIRE AVE 5205 LEESBURG PIKE STE 1200
PITTSBURGH PA 15213- SILVER SPRING MD 20903-5640 FALLS CHURCH VA 22042-
PHONE: (412)268-6927 PHONE: (301)394-3097 PHONE: (703)671-8680
FAX: (412)268-3890 FAX: (301)394-3923 FAX: (703)671-8932
EMAIL: JKS@USA.ECE.CMU.EDU EMAIL: HSZU@ULYSSES.NSWC.NAVY.MIL EMAIL: TAMUCCI@NUSC.NAVY.MIL

BEVERLEY TANKSLEY LONNIE WELCH STEPHANIE WHITE
M/S: M/S: DEPARTMENT OF C/IS M/S: MS A08-35
MYSTECH ASSOCIATES INC. NEW JERSEY INSTITUTE OF TECH GRUMMAN CRC
5205 LEESBURG PIKE STE 1200 UNIVERSITY HTS
FALLS CHURCH VA 22042- NEWARK NJ 07102- BETHPAGE NY 11714-3580
PHONE: (703)671-8680 PHONE: (201)596.5683 PHONE: (516)575-2201
FAX: (703)671-8932 FAX: (201)596-5777 FAX: (516)575-7716
EMAIL- EMAIL: WELCH@VIENNA.NJIT.EDU EMAIL: STEPH@GDSTECH.GRUMMAN.COM

JAMES WILLIAMSON MARK WILSON
MIS: CODE 703A M/S: CODE B40
NAWC NSWCDD

10901 NEW HAMPSHIRE AVE
WARMINSTER PA 18974- SILVER SPRING MD 20903-5640
PHONE: (215)441-1564 PHONE: (301)394-5099
FAX: (215)441-3225 FAX: (301)394-1175
EMAIL:* JAW@NADC.NAVY.MIL EMAIL: MLWILSO@NSWC-WO.NAVY.MIL

0-6

DISTRIBUTION

DOD ACTIVITIES (CONUS) NON-DOD ACTIVITIES

ATTN CODE A-10 CENTER FOR NAVAL ANALYSES
(PHILLIP HWANG) 10 4401 FORD AVENUE

DEFENSE MAPPING AGENCY PO BOX 16268
8613 LEE HIGHWAY ALEXANDRIA VA 22302-0268 2
FAIRFAX VA 22031-2137

ATTN GIFT & EXCHANGE DIVISION 4
DEFENSE TECHNICAL LIBRARY OF CONGRESS

INFORMATION CENTER WASHINGTON DC 20540
CAMERON STATION
ALEXANDRIA VA 22304-6145 12 ATTN GARY BERG-CROSS I

ADVANCED DECISION SYSTEMS,
ATTN CODE 5543 BOOZ-ALLEN & HAMILTON, INC.

(KATHERINE MEADOWS) 1 SUITE 600
NAVAL RESEARCH LABORATORY 1953 GALLOWS ROAD
4555 OVERLOOK AVE SW VIENNA VA 22182
WASHINGTON DC 20375

ATTN LONNIE WELCH 1
ATTN CODE 4411B THE REAL-TIME COMPUTING LAB

(ELIZABETH WALD) 1 DEPT OF COMPUTER AND
CODE 4411C INFORMATION SCIENCE

(GRACIE THOMPSON) 1 NJIT
OFFICE OF NAVAL RESEARCH UNIVERSITY HEIGHTS
800 NORTH QUINCY STREET NEWARK NJ 07102
ARLINGTON VA 22217-5000

ATTN WEI YEH 1
ATTN CODE E29L 4 ADRIEN MESKIN 1
COASTAL SYSTEMS STATION ATR

DAHLGREN DIVISION 15210 DINO DRIVE
NAVAL SURFACE WARFARE CENTER BURTONSVILLE MD 20866-1172
6703 WEST HIGHWAY 98
PANAMA CITY FL 32407-7001 ATTN GRAEME JONES 1

27 TYNE STREET
BROADGATE
PRESTON, LANCASHIRE
PRI SED
ENGLAND

i
DISTRIBUTION (Continued)

INTERNAL
A1
A44 (R SCALZO) 1
B1
B02 1
305 (H CRISP) 5
Blo (S ARKER) 1
B10 (W FARR) 1
B10 (H HUBER) 1
B10 (D PARKS) 1
B20 1
B30 1
B35 (M CHANG) 1
B35 (R HARRISON) 1
B35 (M MASTERS) 1
B42 (J MOSCAR) 1
B44 1
B44 (M EDWARDS) 1
B44 (N HOANG 1
B44 (S HOWELL) 10
B44 (M JENKINS) 1
B44 (C NGUYEN) 1
B44 (H ROTH) 1
B44 (N TRINH) 1
B44 (M WILSON) 1
B44 (C YEN) 1
D 1
D4 1
E231 2
E232 3
E342 (GIDEP) 1
F 1
G 1
K 1
L 1
N 1

(2)

